首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protective effect of colchiceine against acute liver damage   总被引:1,自引:0,他引:1  
Pretreatment of rats with colchiceine (10 micrograms/day/rat) for seven days protected against CCl4-induced liver damage. CCl4 intoxication was demonstrated histologically and by increased serum activities of alanine amino transferase (ALT), alkaline phosphatase (Alk. Phosph.) gamma glutamyl transpeptidase (GGTP), bilirubins and decreased activity of glucose-6-phosphatase (G-6Pase). Furthermore, an increase in liver lipid peroxidation and a decrease in plasma membrane GGTP and Alk. Phosph. activities were found. Colchiceine increased 1.5-fold the LD50 of CCl4 and prevented the release of intracellular enzymes as well as the decrease in GGTP and Alk. Phosph. activities in plasma membranes. It also completely prevented the lipid peroxidation induced by CCl4 and limited the extent of the histological changes.  相似文献   

2.
The effect of ad libitum ingestion of selenium (Se) in drinking water (0.15 mg SeO2/L) for 3 wk on the brain weight, total brain protein, glutathione (GSH) level, catalase activity, and lipid peroxidation in the brain of protein-undernourished (PU) rats was investigated, in an attempt to determine whether antioxidants alone can reverse some of the neuropathological changes associated with protein undernutrition in rats. Feeding on a normal diet (16% casein) by well-fed rats or a low-protein diet (5% casein) by PU rats and Se-treated PU rats lasted 14 wk. Setreated PU rats were given Se in drinking water during the last 3 wk of the experiment. Results show that protein undernutrition induced significant reductions (p<0.001) in brain weight, total brain protein, and catalase activity (p<0.05) while it induced a significant increase (p<0.05) in lipid peroxidation when compared with well-nourished rats; but no significant effect was observed for the GSH level. However, the ingestion of Se in drinking water by PU rats for 3 wk resulted in significant increases (p<0.05) in brain weight, catalase activity, and total brain protein but induced a significant reduction (p<0.05) in lipid peroxidation when compared with PU rats given water. The values obtained for Setreated PU rats are comparable with those obtained for well-nourished rats. The GSH level was, however, not affected by Se ingestion. We suggest that Se, by inducing increases in the concentration of certain proteins, including catalase, in the brain, abolished some of the pathological changes associated with protein undermutrition in the brain, and appears as a promising antioxidant in the prevention and management of pro-oxidant-induced brain damage.  相似文献   

3.
L-Glutamine at 18 mM protects mammalian cells against freeze-thaw (FT) damage by a factor of about 6, depending on FT conditions, in balanced salt solutions. While not nearly as effective a cryoprotectant as dimethyl sulfoxide (DMSO) or propylene glycol (PG), the mechanism of protection by glutamine appears to be independent from that of DMSO or PG; thus, 18 mM glutamine is effective at reducing FT damage in combination with these agents. These combinations allow lower concentrations of the more toxic agents DMSO and PG to be used in FT medium. There is no pre-FT or post-FT effect of glutamine when cells are exposed to a FT cycle in balanced salt solutions. Hence, protection is due to its presence during the FT-cycle. The presence of 2 mM L-glutamine in Eagle's basal medium is sufficient to account for cryoprotection by this medium.  相似文献   

4.
Incubation of rat brain synaptosomal/mitochondrial fraction with tert-butylhydroperoxide resulted in accumulation of the lipid peroxidation product, conjugated dienes, damage of the synaptosomal membrane as evidenced by leakage of lactate dehydrogenase, and decrease of the total content of glutathione and of the GSH/GSSG ratio. This treatment also produced a considerable decrease of the ouabain-sensitive ATPase activity and a much smaller diminution of the activities of glutathione reductase and glutathione transferase. Preincubation of the synaptosomal/mitochondrial fraction with 0.5 or 1.0 mM L-methionine significantly protected against lipid peroxidation, membrane damage and changes in the glutathione system produced by low (1 mM) concentrations of tert-butylhydroperoxide and completely prevented inactivation of ouabain-sensitive ATPase, glutathione reductase and glutathione transferase by such treatment. The importance of L-methionine in antioxidant protection is discussed.  相似文献   

5.
6.
Hypercholesterolemia is a major risk factor for age-related diseases such as atherosclerosis and Alzheimer’s disease (AD). Changes in human plasma cholesterol levels results from the interaction between multiple genetic and environmental factors. The accumulation of excess cholesterol in blood vessels leads to atherosclerosis. Many studies on this field show that differential expression of oxidative stress-related proteins, lipid metabolism-related enzymes, and receptors response to atherogenic diet. Additionally, excess brain cholesterol has been associated with increased formation and deposition of amyloid-β peptide from amyloid precursor protein which may contribute to the risk and pathogenesis of AD. To consider genetically, more than 50 genes have been reported to influence the risk of late-onset AD. Some of these genes might be also important in cholesterol metabolism and transport. Epidemiological studies have shown an association between high intake and high serum concentrations of antioxidant vitamins like vitamin E and lower rates of ischemic heart diseases. It has been known that vitamin E also inhibits smooth muscle cell proliferation by non-antioxidant mechanism. On the basis of the previous results, vitamin E has been accepted as an important protective factor against hypercholesterolemia-induced age-related diseases.  相似文献   

7.
Evidence suggests that inactivation of cell-damaging mechanisms and/or activation of cell-survival mechanisms may provide effective preventive or therapeutic interventions to reduce cerebral ischemia/reperfusion (I/R) injuries. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid in the central nervous system that has been shown to possess neuroprotective effects. We examined whether different preadministrative protocols of DHA have effects on brain injury after focal cerebral I/R and investigated the potential neuroactive mechanisms involved. Sprague–Dawley rats were intraperitoneally pretreated with DHA once 1 h or 3 days being subjected to focal cerebral I/R or daily for 6 weeks before being subjected to focal cerebral I/R. Reduction of brain infarction was found in all three DHA-pretreated groups. The beneficial effect of DHA on the treatment groups was accompanied by decreases in blood–brain barrier disruption, brain edema, malondialdehyde (MDA) production, inflammatory cell infiltration, interleukin-6 (IL-6) expression and caspase-3 activity. Elevation of antioxidative capacity, as evidenced by decreased MDA level and increased superoxide dismutase activity and glutathione level, was detected only in the chronic daily-administration group. The two single-administration groups showed increased phosphorylation of extracellular-signal-regulated kinase (ERK). Elevation of Bcl-2 expression was detected in the chronic daily-administration and 3-day-administration groups. In vitro study demonstrated that DHA attenuated IL-6 production from stimulated glial cells involving nuclear factor κB inactivation. Therefore, the data suggest that the neuroprotective mechanisms of DHA pretreatment are, in part, mediated by attenuating damaging mechanisms through reduction of cytotoxic factor production and by strengthening survival mechanisms through ERK-mediated and/or Bcl-2-mediated prosurvival cascade.  相似文献   

8.
9.
Many deleterious effects on the skin have been associated with the ultraviolet B (UVB) portion of the solar spectrum. The role of green tea polyphenols (GTP) in protecting HaCaT cells against the UVB-induced damages was examined. The promotion effect of low level GTP on cell viability was revealed in a dose-dependent manner. High level GTP had a cytotoxic effect. UVB induced destruction of HaCaT cells, including shedding of cell membrane microvilli, degeneration of nucleus and nucleols and changes of mitochondrial size and internal cristae. GTP alleviated the UVB-induced destructive morphological changes in HaCat cells. It is considered that GTP affords protection against the UVB-induced stress via both interacting with UVB-induced reactive oxygen species and attenuating mitochondrion-mediated apoptosis.  相似文献   

10.
Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.  相似文献   

11.
This study focused on the hepatoprotective activity of C-phycocyanin (C-PC) against carbon tetrachloride-induced hepatocyte damage in vitro and in vivo. In in vitro study, human hepatocyte cell line L02 was used. C-PC showed its capability to reverse CCl4-induced L02 cells viability loss, alanine transaminase (ALT) leakage and morphological changes. C-PC also showed the following positive effects: prevent the CCl4-induced overproduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA); prevent changes in superoxide dismutase (SOD) activity; and reduce glutathione (GSH) level. In vivo, C-PC showed its capability to decrease serum ALT and aspartate transaminase (AST) levels in CCl4-induced liver damage in mice. The histological observations supported the results obtained from serum enzymes assays. C-PC also showed the following effects in mice liver: prevent the CCl4-induced MDA formation and GSH depletion; prevent SOD and glutathione peroxidase (GSH-Px) activity; and prevent the elevation of transforming growth factor-beta1 (TGF-β1) and hepatocyte growth factor (HGF) mRNAs. Both the in vitro and in vivo results suggested that C-PC was useful in protecting against CCl4-induced hepatocyte damage. One of the mechanisms is believed to be through C-PCs scavenging ability to protect the hepatocytes from free radicals damage induced by CCl4. In addition, C-PC may be able to block inflammatory infiltration through its anti-inflammatory activities by inhibiting TGF-β1 and HGF expression.  相似文献   

12.
异搏定对四氧嘧啶损害大鼠胰岛β细胞的保护作用   总被引:9,自引:0,他引:9  
魏英杰  于吉人 《生理学报》1992,44(2):209-214
本工作用四氧嘧啶(尾静脉注射)造成大鼠实验性糖尿病模型。若预先由腹腔注射异搏定(40mg/kg)则可使大鼠血糖水平明显降低,不产生糖尿病,注射四氧嘧啶后48h,血糖浓度的平均值由22.93±1.37mmol/L下降到8.79±0.83mmol/L。口服葡萄糖耐量试验观察到,经过异搏定处理的糖尿病大鼠,在注射四氧嘧啶后的48h,其胰岛素分泌功能较未经异搏定处理的糖尿病大鼠有明显的恢复。组织学切片也显示,胰岛β细胞内胰岛素分泌颗粒的含量在异搏定处理组较单独四氧嘧啶处理组明显增多。上述结果表明,预先注射异搏定能减轻四氧嘧啶对胰岛β细胞造成的急性损伤。  相似文献   

13.
Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.  相似文献   

14.
Effects of feeding sucrose rich diet supplemented with and without the insulinmimetic agent vanadate for a period of six weeks were studied in rats. Sucrose diet caused hypertriglyceridemia (140% increase), hyperinsulinemia (120% increase) and significant elevations in the levels of glucose (p<0.001) and cholesterol (p<0.05) in plasma as compared to control starch fed rats. Activities of hepatic lipogenic enzymes, ATP-citrate lyase, glucose 6-phosphate dehydrogenase and malic enzyme increased by 100–150% as a result of sucrose feeding. However, glycogen content and the activities of glycogen synthase and phosphorylase in liver remained unaltered in these animals. The plasma levels of triacylglycerols and insulin in the rats fed on vanadate supplemented sucrose diet were 65% and 85% less, respectively as compared to rats on sucrose diet without vanadate. The concentrations of glucose and cholesterol in plasma and the activities of lipogenic enzymes in liver did not show any elevation in sucrose fed rats when supplemented with vanadate. These data indicate that the sucrose diet-induced metabolic aberrations can be prevented by the insulin-mimetic agent, vanadate.  相似文献   

15.
Recent findings of acrylamide (AA) in many common foods have sparked renewed interest in assessing human health hazards. AA was evaluated by the International Agency for Research on Cancer as probably carcinogenic to humans. For this reason, the aim of this study is to evaluate the potential genotoxic effect of AA using chromosomal aberration analysis and micronucleus (MN) test in mouse bone-marrow cells and morphological sperm abnormalities. The result of the present work indicated that treatment with a single dose of 10, 20, or 30 mg/kg b.wt. of AA for 24 h and the repeated dose of 10 mg/kg b.wt. for 1and 2 weeks induced a statistically significant increase in the percentage of chromosomal aberrations and micronuclei in bone- marrow cells. These percentages reduced significantly in all groups treated with AA and the protective agent l-carnitine. Also the results indicated that the dose 10, 20 and 30 mg/kg b.wt. of AA induced a statistically significant percentage of morphological sperm abnormalities compared with the control group. Such effect reached its maximum (7.24 ± 0.61) with the highest tested dose which reduced to (4.02 ± 0.58) in the group treated with the same dose of AA and l-carnitine. In conclusion, the results confirm the protective role of LC against the mutagenicity of AA.  相似文献   

16.
17.
18.
This study aimed to investigate the protective effects of arbutin (ARB) against brain injury induced in rats with potassium bromate (KBrO3). The rats were divided into four groups as Group 1: Control (0.9% NaCl ml/kg/day p.), Group 2: KBrO3 (100 mg/kg (gavage), Group 3: ARB (50 mg/kg/day p.), and Group 4: KBrO3 + ARB (100 mg/kg (gavage) + 50 mg/kg/day p.). At the end of the fifth day of the study, the rats in all groups were killed, and their brain tissues were collected. In the collected brain tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured, and routine histopathological examinations were made. The MDA levels in the group that was exposed to KBrO3 were significantly higher than those in the control group (p ˂ 0.001). In comparison to the KBrO3 group, the MDA levels in the KBrO3 + ARB group were significantly lower (p ˂ 0.001). It was observed that SOD and CAT enzyme activity levels were significantly lower in the KBrO3 group compared to the control group (p ˂ 0.001), while these levels were significantly higher in the KBrO3 + ARB group than in the KBrO3 group (p ˂ 0.001). Additionally, the group that was subjected to KBrO3 toxicity, as well as ARB administration, had much lower levels of histopathologic signs than the group that was subjected to KBrO3 toxicity only. Consequently, it was found that KBrO3 exposure led to injury in the brain tissues of the rats, and using ARB was effective in preventing this injury.  相似文献   

19.
An imbalance between production of reactive oxygen species (ROS) and its elimination by antioxidant defense system in the body has been implicated for causes of aging and neurodegenerative diseases. This study was design to assess the changes in activities of antioxidant enzymes (superoxide dismutase (SOD), glutathione-S-transferase (GST), catalase), lipid peroxidation and reduced glutathione (GSH) levels in the brain of 2, 10 and 20 month old rats, and to determine the effect of safranal on the status of selected oxidative stress indices in the 10 and 20 month old rats. The aged rats (10 and 20 months) were given intraperitoneal injections of safranal (0.5 mg/kg day) daily for one month. The results of this study demonstrated that aging caused significant increase in the level of lipid peroxidation as well decrease in the GSH level and activities of SOD and GST in the brain of aging rats. The results of this study showed that safranal ameliorated the increased lipid peroxidation level as well as decreased GSH content of the brain of 10 and 20 month old rats. In addition, safranal treatment to the 20 month old rats, which restored the SOD and GST activities. In conclusion, safranal can be effective to protect susceptible aged brain from oxidative damage by increasing antioxidant defenses.  相似文献   

20.
Carboxymethyl-glucan (CM-G) is a soluble derivative from Saccharomyces cerevisiae (1 → 3)(1 → 6)-β-D-glucan. The protective efficiency of CM-G against DNA damage in cells from patients with advanced prostate cancer (PCa), and undergoing Androgen Deprivation Therapy (ADT), was evaluated. DNA damage scores were obtained by the comet assay, both before and after treatment with CM-G. The reduction in DNA damage, ranging from 18% to 87%, with an average of 59%, was not related to the increased number of leukocytes in peripheral blood. The results demonstrate for the first time the protective effect of CM-G against DNA damage in patients with advanced PCa. Among smokers, three presented the highest reduction in DNA damage after treatment with CM-G. There was no observable relationship between DNA damage scores before and after treatment, and age, alcoholism and radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号