首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Components of tumorigenesis include uncontrolled proliferation and defects in cell death pathways, as well as increased angiogenesis, in which tumors develop their own blood supply, and metastasis, which enables tumor dissemination. Most anticancer drugs are designed to kill cancer cells but are relatively ineffective against some phases of tumorigenesis. Alternate strategies to prevent tumorigenesis are urgently required and considerable evidence has emerged that ω-3 polyunsaturated fatty acids (PUFAs) derived from certain plants and oily fish are important modulators of tumor cell proliferation, apoptosis, angiogenesis and metastasis. Epidemiological studies in man, as well as experimental studies in animal models and cells, have reported that while ω-6 PUFA accelerate tumorigenesis, ω-3 PUFA have anticancer properties. The over-expression of certain PUFA-metabolizing enzymes in tumors, including cyclooxygenases, lipoxygenases and cytochromes P450 (CYP), has provided the impetus for studies on the roles of biotransformation products in the cancer-modulatory actions of PUFAs. Some ω-6 PUFA metabolites, including PGE2, 5-HETE and the CYP-derived EETs, stimulate tumorigenesis by activating prostanoid receptors, nuclear receptors and intracellular signal transduction cascades. In contrast, ω-3 PUFA both inhibit the formation of pro-tumorigenic ω-6 PUFA metabolites and generate ω-3 metabolites that are anti-tumorigenic in their own right, including PGE3 and the 17,18-epoxide of epoxyeicosapentaenoic acid (HETE). Some of these naturally occurring metabolites of ω-3 PUFA formed in human cells may be useful lead compounds for the development of novel agents that inhibit cancer.  相似文献   

2.
《Life sciences》1997,61(19):PL269-PL274
Arterial smooth muscle cell migration from the media to the intima is a crucial process in the pathogenesis of atherosclerosis. Platelet-derived growth factor (PDGF) has been proposed to play a key role in the development of advanced atherosclerotic lesions by stimulating the migration and proliferation of vascular smooth muscle cells. Polyunsaturated fatty acids (PUFA) of the ω-3 series, extracted from fish oil has been shown to have beneficial effects on atherosclerosis. In this study, we evaluated the effects of ω-3 PUFA on the migration of human aortic smooth muscle cell (hASMC) in vitro. The migration assay was performed according to the Capsoni's method using transwell culture plates. PDGF, fibrinogen or 10%FCS significantly stimulated hASMC migration, however, ω-3 PUFA significantly inhibited PDGF-induced migration of hASMC. These results suggest that the inhibitory effect of ω-3 PUFA on cell migration may be an important aspect by which ω-3 PUFA exerts its antiatherosclerotic influence.  相似文献   

3.
ω-3 polyunsaturated fatty acids (PUFAs) (alpha-linolenic, eicosapentaenoic, and decosahexaenoic acids) are classified with essential fatty acids and are structural components of the phospholipid bilayer of cell membranes. ω-3 PUFAs incorporated into the phospholipid domain of cell membranes are metabolized to prostaglandins and thromboxanes (PGI 3, PGE 3, TxA, etc.), which significantly differ in biological activity from those formed in the arachidonic acid cascade (PGI 2, PGE 2, TxA 2, etc.) and to which the antiaggregatory, antiatherogenic, and vasodilating effects of ω-3 PUFAs can largely be attributed. In addition, ω-3 PUFAs incorporated into cardiomyocyte cell membranes considerably modify the functional activity of transmembrane voltage-gated ion channels by causing a dose-dependent inhibition of the outward transmembrane sodium current, slowing down the work of transmembrane voltage-gated slow L-type calcium channels, and partially blocking the efflux of potassium ions from cardiomyocytes, thus showing the properties of class I, III, and IV antiarrhythmic drugs according to the Vaughnan Williams classification. Several clinical trials have supported experimental data that ω-3 PUFAs have membrane-stabilizing (antiarrhythmogenic) effects. For example, in the GISSI-Prevenzione trial, a large-scale, randomized, placebo-controlled study conducted in more than 9.5 thousand patients with left ventricular systolic dysfunction after myocardial infarction, ω-3 PUFA regular consumption significantly reduced the risk of sudden cardiac death by more than 50% in these patients. In our review, the mechanisms underlying the membrane-stabilizing, antiaggregatory, antiatherogenic, and vasodilating effects of ω-3 PUFAs and the clinical effectiveness of ω-3 PUFAs have been analyzed in terms of evidencebased pharmacology.  相似文献   

4.
Dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) have potent biological effects on the blood(cells), the vasculature and the myocardium. In the epidemiological studies in which the benefit from the regular ingestion of n-3 PUFAs was reported, the responsible mechanisms remain obscure. A great deal of the PUFA-effect can be explained by the known interference with the eicosanoid metabolism. Many processes, believed to be involved in atherogenesis such as adhesion and infiltration of bloodcells (in)to the vasculature, platelet aggregation, secretion of endothelium-derived factors and mitogenic responses of vascular smooth muscle cells are partially mediated by receptor-activated phospholipases C- and A2. As PUFAs take part at many steps of the signalling pathways, the latter could represent important action sites to beneficially interfere with atherogenesis. In this brief review, we have discussed the results of studies on the influence of alteration of PUFA composition of the membrane phospholipids or of exogenously administered non-esterified PUFAs on phospholipid signalling. For convenience, we have mainly focused our discussion on those studies available on the myocardium. By changing the PUFA composition of the phospholipids, the endogenous substrates for the membrane-associated phospholipase C- and A2 are changed. This is accompanied by changes in their hydrolytic action on these substrates resulting in altered products (the molecular species of 1,2-diacylglycerols and the non-esterified PUFAs) which on their turn evoke changes in events downstream of the signalling cascades: activation of distinct protein kinase C isoenzymes, formation of distinct eicosanoids and non-esterified PUFA effects on Ca 2+ channels. It has also become more clear that the membrane physicochemical properties, in terms of fluidity and cholesterol content of the bilayer, might undergo changes due to altered PUFA incorporation into the membrane phospholipids. The latter effects could have consequences for the receptor functioning, receptor-GTP-binding protein coupling, GTP-binding protein-phospholipase C- or A2 coupling as well. It should be noted that most of these studies have been carried out with cardiomyocytes isolated from hearts of animals on PUFA diet or incubation of cultured cardiomyocytes with non-esterified PUFAs in the presence of albumin. Studies need to be performed to prove that the PUFA-diet induced modulations of the phospholipid signalling reactions do occur in vivo and that these effects are involved in the mechanism of beneficial effects of dietary PUFAs on the process of atherosclerosis.  相似文献   

5.
Some neoplastic cell lines are readily killed when incubated in the presence of polyunsaturated fatty acids (PUFA). In an attempt to elucidate this phenomenon, we studied PUFA-driven superoxide (O2-) production by cultured NS-1 cells (murine lymphoid tumor cells). We find: (1) Even in the absence of added PUFA, NS-1 cells generate O2- (i.e., reduce nitroblue tetrazolium). (2) addition of PUFA increases O2- by greater than 50%. (3) Artificial loading of NS-1 cells with liposome encapsulated superoxide dismutase prevents the majority of spontaneous and PUFA-driven NBT reduction. We conclude that PUFA drives O2- generation by tumor cells, that this generation is largely intracellular, and that this phenomenon may help explain toxicity of PUFA for tumor cells.  相似文献   

6.
7.
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function.  相似文献   

8.
The bile salt export pump (BSEP/Bsep; gene symbol ABCB11/Abcb11) translocates bile salts across the hepatocyte canalicular membrane into bile in humans and mice. In humans, mutations in the ABCB11 gene cause a severe childhood liver disease known as progressive familial intrahepatic cholestasis type 2. Targeted inactivation of mouse Bsep produces milder persistent cholestasis due to detoxification of bile acids through hydroxylation and alternative transport pathways. The purpose of the present study was to determine whether functional expression of hepatic cytochrome P450 (CYP) and microsomal epoxide hydrolase (mEH) is altered by Bsep inactivation in mice and whether bile acids regulate CYP and mEH expression in Bsep ?/? mice. CYP expression was determined by measuring protein levels of Cyp2b, Cyp2c and Cyp3a enzymes and CYP-mediated activities including lithocholic acid hydroxylation, testosterone hydroxylation and alkoxyresorufin O-dealkylation in hepatic microsomes prepared from female and male Bsep ?/? mice fed a normal or cholic acid (CA)-enriched diet. The results indicated that hepatic lithocholic acid hydroxylation was catalyzed by Cyp3a/Cyp3a11 enzymes in Bsep ?/? mice and that 3-ketocholanoic acid and murideoxycholic acid were major metabolites. CA feeding of Bsep ?/? mice increased hepatic Cyp3a11 protein levels and Cyp3a11-mediated testosterone 2β-, 6β-, and 15β-hydroxylation activities, increased Cyp2b10 protein levels and Cyp2b10-mediated benzyloxyresorufin O-debenzylation activity, and elevated Cyp2c29 and mEH protein levels. We propose that bile acids upregulate expression of hepatic Cyp3a11, Cyp2b10, Cyp2c29 and mEH in Bsep ?/? mice and that Cyp3a11 and multidrug resistance-1 P-glycoproteins (Mdr1a/1b) are vital components of two distinct pathways utilized by mouse hepatocytes to expel bile acids.  相似文献   

9.
10.
A method for the synthesis of long chain fatty acids substituted at the ω and ω-1 positions has been developed. The key step is the isomerization of the triple bond of an alkyn-1-ol from an internal position in the chain to the free terminus with a new, convenient reagent, sodium aminopropylamide (NaAPA). Standard functional group manipulations i.e., Jones oxidation, esterification and hydroboration of the triple bond are used to prepare ω-hydroxy fatty esters. The generality of the method is illustrated with syntheses of ω-hydroxy fatty esters with 24, 26, 28 and 30 carbon chains.In the 24 carbon series, hydration of the terminal triple bond of alkynoic ester 4a followed by reduction gave the (ω-1)-hydroxy ester.  相似文献   

11.
The consequences of a dietary n3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semipurified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120–180 ± 2 mm Hg in the control group, but only to 165 ± 3 mm Hg in the n3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.  相似文献   

12.
Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curaçao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCPω3 and LCPω6 intakes from Lake Victoria fish. Women with preeclampsia (n=28) in Mwanza had lower PUFA and higher 20:0 in UV and UA, compared with normotensive/non-proteinuric controls (n=31). Their UV 22:6ω3, 22:4ω6, LCPω6, ω6, and LCPω3+ω6 were lower, while saturated FA, potentially de novo synthesized FA (Σde novo) and (Σde novo)/(LCPω3+ω6) ratio were higher. Their UA had higher 16:1ω7, ω7, 18:0, and 16:1ω7/16:0. Umbilical vessels in Mwanza had higher 22:6ω3, LCPω3, ω3, and 16:0, and lower 22:5ω6, 20:2ω6, 18:1ω9, and ω9, compared to those in Curaçao. Preeclampsia in both Mwanza and Curaçao is characterized by lower LCP and higher Σde novo. An explanation of this might be placental dysfunction, while the similarity of umbilical vessel FA-abnormalities in preeclamptic and diabetic pregnancies suggests insulin resistance as a common denominator.  相似文献   

13.
Earlier studies on the synthesis of C3-derived amino acids, plastidic isoprenoids and fatty acids from CO2 by isolated chloroplasts in the light indicate the presence of a complete, but low-capacity, chloroplast (chlp) 3-phosphoglycerate acetyl-CoA pathway which is predominantely active in immature (developing) chloroplasts (A. Heintze et al., 1990, Plant Physiol. 93, 1121–1127). In this paper, we demonstrate the activity of the enzymes involved i.e. chlp phosphoglycerate mutase, chlp enolase, chlp pyruvate kinase and chlp pyruvate-dehydrogenase complex (PDC), in the stroma of purified barley (Hordeum sativum L.) chloroplasts of different developmental stages. The chlp phosphoglycerate mutase was partially purified for the first time. The activities of the enzymes of this chlp pathway (except PDC) were about a magnitude lower than those of the cytosolic enzymes. The chlp PDC of barley was more active than that of spinach. The apparent K m values of the enzymes of this pathway were about 100 M or lower except for the chlp phosphoglycerate mutase which had a K m of 1.6–1.8 mM for 3-phospho-d-glycerate. Interestingly, no appreciable change in the activity of these enzymes was observed during maturation of the chloroplasts. In contrast, the activity of the reversible NADP+-glyceraldehyde 3-phosphate dehydrogenase increased about five times (from 140 to 590 nkat per g leaf dry weight). The following hypothesis is put forward to explain the regulation of carbon metabolism during chloroplast development: 3-phospho-d-glycerate is withdrawn from a common pool by the actions of 3-phosphoglycerate kinase and NADP+-glyceraldehyde-3-phosphate dehydrogenase, the activity of which increases considerably during maturation of chloroplasts. This leads to an insufficient supply of 3-phospho-glycerate for the chlp phosphoglycerate mutase, which has a low affinity for its substrate.Abbreviations C3 C25 pathway 3-phospho-d-glycerate acetyl-CoA pathway - Chl chlorophyll - chlp chloroplast(ic) - GAP d-glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - PDC pyruvate dehydrogenase complex - PEP phosphoenolpyruvate - 2- and 3-PGA 2- and 3-phospho-d-glycerate - U unit - mmol·mint-1 (=16.67 nkat) This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, FRG and Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie e. V., Frankfurt/Main, FRG, (scholarship to P.H.). The authors thank Dr. K.P. Heise (Institut für Biochemie der Pflanzen, Universität Göttingen, FRG) for the gas-liquid chromatography measurements, Gabriele Böl, Dietmar Budde, Daniel Gruber, Andreas Haaf, and Antje Wassmann (all Zentrum Biochemie, Medizinische Hochschule Hannover, FRG) and Kerstin Meereis, Martin Preiss, Uwe Schwanke (all Botanisches Institut, Tierärztliche Hochschule Hannover, FRG) for detailed and skillful work, Dr. Indra Willms-Hoff, Carola Leuschner and Dr. Christian L. Schmidt for constructive criticism, and Mrs. Saime Aydogdu for technical assistance.  相似文献   

14.
《Process Biochemistry》2010,45(5):815-819
The use of commercial proteases, bromelain and Protex 30L for oil extraction/recovery of polyunsaturated fatty acids (PUFA) from Nile perch and salmon heads was evaluated. Four phases were obtained after hydrolysis, oily phase, emulsion, aqueous phase and sludge. An increase in water content during the hydrolysis resulted in a decrease in oil yield. Maximum oil yield was obtained when hydrolysis was performed with Protex 30L at 55 °C, without pH adjustment or water addition. An oil yield of 11.2% and 15.7% of wet weight was obtained from Nile perch and salmon heads, respectively, compared to 13.8% and 17.6%, respectively obtained using solvent extraction. Fatty acid distribution analysis showed 50% of palmitic acid was in sn-2 position in Nile perch triglycerides (TAG), while only 16% of this fatty acid was in sn-2 position in salmon oil TAG.  相似文献   

15.
The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.  相似文献   

16.
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3′carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3′-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.  相似文献   

17.
Regio- and stereo-selective hydroxylation of bile acids is a valuable reaction but often lacks suitable catalysts. In the research, semi-rational design in protein engineering techniques had been applied on cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, and a mutation library had been set up for the 1β-hydroxylation of lithocholic acid (LCA) to produce 1β-OH-LCA. After four rounds of mutagenesis, a key residue at W72 was identified to regulate the regio- and stereo-selectivity at C1 of LCA. A quadruple variant (G87A/W72T/A74L/L181M) was identified to reach 99.4% selectivity of 1β-hydroxylation and substrate conversion of 68.1% resulting in a 21.5-fold higher level of 1β-OH-LCA production than the template LG-23. Molecular docking indicated that introducing hydrogen bonds at W72 was responsible for enhancing selectivity and catalytic activity, which gave some insights into the structure-based understanding of Csp3-H activation by the developed P450 BM3 mutants.  相似文献   

18.
19.
Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors.  相似文献   

20.
In plants, extracellular matrix polymers built from polysaccharides and cuticular lipids have structural and protective functions. The cuticle is found to be ten times thinner in Arabidopsis thaliana (L.) Heynh than in many other plants, and there is evidence that it is unusual in having a high content of α-,ω-dicarboxylic fatty acids (FAs) in its polyesters. We designated the new organ fusion mutant hth-12 after it appeared to be allelic to adhesion of calyx edges (ace) and hothead (hth), upon molecular cloning of the gene by transposon tagging. This mutant is deficient in its ability to oxidize long-chain ω-hydroxy FAs to ω-oxo FAs, which results in leaf polyesters in decreased α-,ω-dicarboxylic FAs and increased ω-hydroxy FAs. These chemical phenotypes lead to disorder of the cuticle membrane structure in hth-12. ACE/HTH is a single-domain protein showing sequence similarity to long-chain FA ω-alcohol dehydrogenases from Candida species, and we hypothesize that it may catalyze the next step after cytochrome P450 FA ω-hydroxylases in the ω-oxidation pathway. We show that ACE/HTH is specifically expressed in epidermal cells. It appears very likely therefore that the changes in the amount of α-,ω-dicarboxylic FAs in hth-12 reflect the different composition of cuticular polyesters. The ACE/HTH gene is also expressed in root epidermal cells which do not form a polyester membrane on the exterior surface, thereby making it possible that the end products of the pathway, α-,ω-dicarboxylic FAs, are generally required for the cross-linking that ensures the integrity of the outer epidermal cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号