首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Lactate and ammonia are the most important waste products of central carbon metabolism in mammalian cell cultures. In particular during batch and fed-batch cultivations these toxic by-products are excreted into the medium in large amounts, and not only affect cell viability and productivity but often also prevent growth to high cell densities. The most promising approach to overcome such a metabolic imbalance is the replacement of one or several components in the culture medium. It has been previously shown that pyruvate can be substituted for glutamine in cultures of adherent Madin-Darby canine kidney (MDCK) cells. As a consequence, the cells not only released no ammonia but glucose consumption and lactate production were also reduced significantly. In this work, the impact of media changes on glucose and glutamine metabolism was further elucidated by using a high-throughput platform for enzyme activity measurements of mammalian cells. Adherent MDCK cells were grown to stationary and exponential phase in six-well plates in serum-containing GMEM supplemented with glutamine or pyruvate. A total number of 28 key metabolic enzyme activities of cell extracts were analyzed. The overall activity of the pentose phosphate pathway was up-regulated during exponential cell growth in pyruvate-containing medium suggesting that more glucose-6-phosphate was channeled into the oxidative branch. Furthermore, the anaplerotic enzymes pyruvate carboxylase and pyruvate dehydrogenase showed higher cell specific activities with pyruvate. An increase in cell specific activity was also found for NAD(+)-dependent isocitrate dehydrogenase, glutamate dehydrogenase, and glutamine synthetase in MDCK cells grown with pyruvate. It can be assumed that the increase in enzyme activities was required to compensate for the energy demand and to replenish the glutamine pool. On the other hand, the activities of glutaminolytic enzymes (e.g., alanine and aspartate transaminase) were decreased in cells grown with pyruvate, which seems to be related to a decreased glutamine metabolism.  相似文献   

2.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

4.
We describe a systematic approach to establish predictive models of CHO cell growth, cell metabolism and monoclonal antibody (mAb) formation during biopharmaceutical production. The prediction is based on a combination of an empirical metabolic model connecting extracellular metabolic fluxes with cellular growth and product formation with mixed Monod-inhibition type kinetics that we generalized to every possible external metabolite. We describe the maximum specific growth rate as a function of the integral viable cell density (IVCD). Moreover, we also take into account the accumulation of metabolites in intracellular pools that can influence cell growth. This is possible even without identification and quantification of these metabolites as illustrated with fed-batch cultures of Chinese Hamster Ovary (CHO) cells producing a mAb. The impact of cysteine and tryptophan on cell growth and cell productivity was assessed, and the resulting macroscopic model was successfully used to predict the impact of new, untested feeding strategies on cell growth and mAb production. This model combining piecewise linear relationships between metabolic rates, growth rate and production rate together with Monod-inhibition type models for cell growth did well in predicting cell culture performance in fed-batch cultures even outside the range of experimental data used for establishing the model. It could therefore also successfully be applied for in silico prediction of optimal operating conditions.  相似文献   

5.
In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 106 cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.  相似文献   

6.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   

7.
CHO cell culture high productivity relies on optimized culture medium management under fed-batch or perfused chemostat strategies enabling high cell densities. In this work, a dynamic metabolic model for CHO cells was further developed, calibrated and challenged using datasets obtained under four different culture conditions, including two batch and two fed-batch cultures comparing two different culture media. The recombinant CHO-DXB11 cell line producing the EG2-hFc monoclonal antibody was studied. Quantification of extracellular substrates and metabolites concentration, viable cell density, monoclonal antibody concentration and intracellular concentration of metabolite intermediates of glycolysis, pentose-phosphate and TCA cycle, as well as of energetic nucleotides, were obtained for model calibration. Results suggest that a single model structure with a single set of kinetic parameter values is efficient at simulating viable cell behavior in all cases under study, estimating the time course of measured and non-measured intracellular and extracellular metabolites. Model simulations also allowed performing dynamic metabolic flux analysis, showing that the culture media and the fed-batch strategies tested had little impact on flux distribution. This work thus paves the way to an in silico platform allowing to assess the performance of different culture media and fed-batch strategies.  相似文献   

8.
Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance.  相似文献   

9.
The increasing demand for recombinant therapeutic proteins highlights the need to constantly improve the efficiency and yield of these biopharmaceutical products from mammalian cells, which is fully achievable only through proper understanding of cellular functioning. Towards this end, the current study exploited a combined metabolomics and in silico modeling approach to gain a deeper insight into the cellular mechanisms of Chinese hamster ovary (CHO) fed-batch cultures. Initially, extracellular and intracellular metabolite profiling analysis shortlisted key metabolites associated with cell growth limitation within the energy, glutathione, and glycerophospholipid pathways that have distinct changes at the exponential-stationary transition phase of the cultures. In addition, biomass compositional analysis newly revealed different amino acid content in the CHO cells from other mammalian cells, indicating the significance of accurate protein composition data in metabolite balancing across required nutrient assimilation, metabolic utilization, and cell growth. Subsequent in silico modeling of CHO cells characterized internal metabolic behaviors attaining physiological changes during growth and non-growth phases, thereby allowing us to explore relevant pathways to growth limitation and identify major growth-limiting factors including the oxidative stress and depletion of lipid metabolites. Such key information on growth-related mechanisms derived from the current approach can potentially guide the development of new strategies to enhance CHO culture performance.  相似文献   

10.
A strategy for fed-batch cultivation of t-PA producing recombinant CHO cells is presented, based on the substitution of glucose and glutamine for slowly metabolized nutrients and in a rational design of the medium. Media for the batch and fed stages were based on the cell specific amino acid requirements, which allowed a more accurate determination of the initiation of the fed stage and the frequency of nutrient addition from then on. Salt concentration was also reduced in both media to avoid an increase in osmolality. As a consequence of this rational design, most amino acid did not accumulate significantly during the fed stage, as usually occurs when their supply is not based on cell requirements; also, lower amounts of by-products were obtained when osmolality level was kept low, that altogether increased viability, longevity and t-PA production when compared with a reference batch culture. Alternating glucose and galactose during the fed stage, allowed lactate detoxification of the cells through their own metabolism. This allowed an increase in cell growth and cell viability with respect to a fed-batch culture in which only glucose was used in the fed stage.  相似文献   

11.
Established bioprocess monitoring is based on quick and reliable methods, including cell count and viability measurement, extracellular metabolite measurement, and the measurement of physicochemical qualities of the cultivation medium. These methods are sufficient for monitoring of process performance, but rarely give insight into the actual physiological states of the cell culture. However, understanding of the latter is essential for optimization of bioprocess development. Our study used LC-MS metabolomics as a tool for additional resolution of bioprocess monitoring and was designed at three bioreactors scales (10 L, 100 L, and 1,000 L) to gain insight into the basal metabolic states of the Chinese hamster ovary (CHO) cell culture during fed-batch. Metabolites characteristics of the four growth stages (early and late exponential phase, stationary phase, and the phase of decline) were identified by multivariate analysis. Enriched metabolic pathways were then established for each growth phase using the CHO metabolic network model. Biomass generation and nucleotide synthesis were enriched in early exponential phase, followed by increased protein production and imbalanced glutathione metabolism in late exponential phase. Glycolysis became downregulated in stationary phase and amino-acid metabolism increased. Phase of culture decline resulted in rise of oxidized glutathione and fatty acid concentrations. Intracellular metabolic profiles of the CHO fed-batch culture were also shown to be consistent with scale and thus demonstrate metabolomic profiling as an informative method to gain physiological insight into the cell culture states during bioprocess regardless of scale.  相似文献   

12.
Attaining metabolic and isotopic balanced growth is one critical condition for physiological studies using isotope-labeled tracers, but is very difficult to obtain in batch culture due to the extensive metabolite exchange with the surrounding medium and related physiological changes. In the present study, we investigated metabolic and isotopic behavior of CHO cells in differently designed media. We observed that the assumption of balanced cell growth cannot be justified in batch culture of CHO cells directly using conventional, commercially available media. By systematically redesigning media composition and characterizing metabolic steady state based on mass balances and measurement of labeling dynamics, we achieved balanced cell growth for the main cellular substrates in CHO cells. This was done in a step-by-step analysis of growth and primary metabolism of CHO cells with the use of [U-13C]glucose feeding and adjusting concentrations of amino acids in the growth medium. The optimized media obtained at the end of the study provide balanced growth and isotopic steady state or at least asymptotic steady state. As a result, we established a platform to conduct isotope-based physiological studies of mammalian systems more reliably and therefore well suited for later use in metabolic profiling of mammalian systems such as 13C-labeled metabolic flux analysis.  相似文献   

13.
A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non-growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model-based optimization of the cell culture for MAb production in both batch and fed-batch systems.  相似文献   

14.
A simple method for control of lactate accumulation in suspension cultures of Chinese hamster ovary (CHO) cells based on the culture's pH was developed. When glucose levels in culture reach a low level (generally below 1 mM) cells begin to take up lactic acid from the culture medium resulting in a rise in pH. A nutrient feeding method has been optimized which delivers a concentrated glucose solution triggered by rising pH. We have shown that this high-end pH-controlled delivery of glucose can dramatically reduce or eliminate the accumulation of lactate during the growth phase of a fed-batch CHO cell culture at both bench scale and large scale (2,500 L). This method has proven applicable to the majority of CHO cell lines producing monoclonal antibodies and other therapeutic proteins. Using this technology to enhance a 12-day fed-batch process that already incorporated very high initial cell densities and highly concentrated medium and feeds resulted in an approximate doubling of the final titers for eight cell lines. The increase in titer was due to additional cell growth and higher cell specific productivity.  相似文献   

15.
The aim of this work was the optimisation of a fed-batch culture by metabolic confinement of BHK21 cells producing an antibody/cytokine fusion protein with potential application in tumour-targeted therapy. Previous results showed that at very low nutrient concentrations, a metabolic shift towards more efficient metabolic pathways occurs. The application of those results in the optimisation of a fed-batch culture resulted in higher cell growth (0.020 vs. 0.016 h(-1)) and cell viability, higher maximum cell concentration (2.5 vs. 1.1x10(6) cell ml(-1)), longer culture span (17 versus nine days) and higher product titre (60% increase), in relation to batch culture. This was achieved by maintaining glucose at 0.3 mM and glutamine at 0.2 mM through the addition of a concentrated solution based on the estimations of future nutrient consumption and growth rates through off line measurements. The production of toxic metabolites such as lactate and ammonia was reduced, especially the lactate production, which was markedly decreased due to the metabolic confinement of the cells. In conclusion, it was possible to increase the final titre of the recombinant antibody/cytokine fusion protein by confining the metabolism of the cells to an energetically more efficient state.  相似文献   

16.
Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors.  相似文献   

17.
Metabolic flux quantification of cell culture is becoming a crucial means to improve cell growth as well as protein and vector productions. The technique allows rapid determination of cell culture status, thus providing a tool for further feeding improvements. Herein, we report on key results of a metabolic investigation using 293 cells adapted to suspension and serum-free medium (293SF) during growth and infection with an adenoviral vector encoding the green fluorescence protein (GFP). The model developed contains 35 fluxes, which include the main fluxes of glycolysis, glutaminolysis, and amino acids pathways. It requires specific consumption and production rate measurements of amino acids, glucose, lactate, NH(3), and O(2), as well as DNA and total proteins biosynthesis rate measurements. Also, it was found that extracellular protein concentration measurement is important for flux calculation accuracy. With this model, we are able to describe the 293SF cell metabolism, grown under different culture conditions in a 3-L controlled bioreactor for batch and fed-batch with low glucose. The metabolism is also investigated during infection under two different feeding strategies: a fed-batch starting at the end of the growth phase and extending during infection without medium change and a fed-batch after infection following medium renewal. Differences in metabolism are observed between growth and infection, as well as between the different feeding strategies, thus providing a better understanding of the general metabolism.  相似文献   

18.
The concept of the feeding strategy was to minimise the formation of inhibiting metabolites and to increase the yield of monoclonal antibodies in fed-batch cultures of hybridoma cells by a balanced supply of substrates. A process control system based on fieldbus technology was used for monitoring and control. External program routines were implemented to control dissolved oxygen (DO) and to calculate the oxygen uptake rate (OUR) and cumulative oxygen consumption (COC) simultaneously. A concentrated feed solution was supplied according to the off-line estimated stoichiometric ratio between oxygen and glucose consumption (GC). Feeding was initiated automatically when the OUR decreased due to substrate limitation. The antibody concentration increased three-fold compared to the conventional batch culture by applying this strategy. But it was not possible to avoid inhibition by ammonia during the fed-batch phase. This was accomplished by the use of a dialysis membrane. Dialysis fed-batch cultures were performed in a membrane dialysis reactor with a `nutrient-split' feeding strategy, where concentrated medium is fed to the cells and toxic metabolites are removed into a buffer solution. This resulted in a ten-fold increase of the antibody concentration compared to the batch. Amino acid concentrations were analysed to identify limiting conditions during the cultivation and to analyse the performance of the nutrient supply in the fed-batch and dialysis fed-batch.  相似文献   

19.
Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a fed-batch experiment with both essential and nonessential amino acids were compared. The fed-batch with glutamine led to a maximum cell density of 2.4x10(6) cells/ml compared to 1.8x10(6) cells/ml achieved in a batch mode. In this fed-batch with glutamine, it was also found that 2.5 mM ammonia was produced compared to the batch which had a final ammonia concentration of 1 mM. Ammonia was found to be growth inhibiting for this cell line at a concentration starting at 1 mM. During the fed-batch with glutamine, the flux analysis shows that a majority of amino acid fluxes and Kreb's cycle fluxes, except for glutamine flux, are decreased. This observation led to the conclusion that the main nutrient used is glutamine and that during the batch there is an overflow in the Kreb's cycle. Thus, a fed-batch with glutamine permits a better utilization of this nutrient. A fed-batch with essential amino acid without glutamine was also assayed in order to reduce ammonia production. The maximum cell density was increased further to 3x10(6) cells/ml and ammonia production was reduced below 1 mM. Flux analysis shows that the cells could adapt to a medium with low glutamine by increasing the amino acid fluxes toward the Kreb's cycle. Adding nonessential amino acids during this feeding strategy did not improve growth further and the nonessential amino acids accumulated in the medium.  相似文献   

20.
Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号