首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day−1. During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW−1 h−1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW−1 h−1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW−1 h−1 at the same time (indicating 100% conversion of substrate carbon to CO2). All of these observations promised a new type of “dry” biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.  相似文献   

2.
Catalytic biofilms minimize reactant toxicity and maximize biocatalyst stability in selective transformations of chemicals to value‐added products in continuous processes. The scaling up of such catalytic biofilm processes is challenging, due to fluidic and biological parameters affording a special reactor design affecting process performance. A solid support membrane‐aerated biofilm reactor was optimized and scaled‐up to yield gram amounts of (S)‐styrene oxide, a toxic and instable high value chemical synthon. A sintered stainless steel membrane unit was identified as an optimal choice as biofilm substratum and for high oxygen mass transfer. A stable expanded polytetrafluoroethylene (ePTFE) membrane was best suited for in situ substrate delivery and product extraction. For the verification of scalability, catalytic biofilms of Pseudomonas sp. strain VLB120ΔC produced (S)‐styrene oxide to an average concentration of 390 mM in the organic phase per day (equivalent to 24.4 g Laq–1 day–1). This productivity was gained by efficiently using the catalyst with an excellent product yield on biomass of 13.6 gproduct gbiomass–1. This product yield on biomass is in the order of magnitude reported for other continuous systems based on artificially immobilized biocatalysts and is fulfilling the minimum requirements for industrial biocatalytic processes. Overall, 46 g of (S)‐styrene oxide were produced and isolated (purity: 99%; enantiomeric excess [ee]: >99.8%. yield: 30%). The productivity is in a similar range as in comparable small‐scale biofilm reactors highlighting the large potential of this methodology for continuous bioprocessing of bulk chemicals and biofuels.  相似文献   

3.
The operational temperature of microbial fuel cell reactors influences biofilm development, and this has an impact on anodic biocatalytic activity. In this study, we compared three microbial fuel cell (MFC) reactors acclimated at 10°C, 20°C and 35°C to investigate the effect on biomass development, methanogenesis and electrogenic activity over time. The start-up time was inversely influenced by temperature, but the amount of biomass accumulation increased with increased temperatures, the 10°C, 20°C and 35°C acclimated biofilms resulted in 0.57, 0.82 and 5.43 g biomass (volatile suspended solids) per litre respectively at 56 weeks of operation. Biofilm build-up on the 35°C anode was further demonstrated by scanning electron microscopy, which showed large aggregations of biomass accumulating on the anode when compared to 10°C and 20°C biofilms. Biomass accumulation had a direct impact on biocatalytic performance, with the maximum power at 35°C after 60 weeks of operation being 2.14 W m−3 and power densities for the 10°C and 20°C reactors being and 4.29 W m−3. Methanogenic activity was also shown to be higher at 35°C, with a rate of 10.1 mmol CH4 biofilm per gram of volatile suspended solid (VSS) per day, compared to 0.28 mmol CH4 per gram of VSS per day produced at 20°C. These results demonstrate that higher MFC operating temperatures could be detrimental to the biocatalytic performance of electrochemically active bacteria in anodic biofilms due to biomass accumulation with enhanced development of non-electrogenic communities (e.g. methanogens and fermenters), meaning that, over time, psychro- or mesophilic operation can have beneficial effects for the development of electrogenically active populations in the reactor.  相似文献   

4.
 For a stable and reliable operation of the biofilm airlift suspension reactor (BAS reactor) means to control biomass concentration, biofilm thickness and biofilm morphology are required. For this reason, the influence of applied detachment forces and surface substrate loading on the formation of heterotrophic biofilms in laboratory-scale BAS reactors was studied. Detachment forces were altered by variation of the initial bare carrier concentration or the superficial air velocity. In addition, the dynamics of biofilm formation during start-up of a full scale BAS reactor (300 m3) was monitored and compared with the laboratory-scale start-up (3 l). This study shows that the biofilm morphology and strength were influenced to a large extent by the surface substrate loading and applied detachment forces. A moderate surface substrate loading and a high detachment force yielded smooth and strong biofilms. The combination of a high surface substrate loading and low detachment forces did lead to rough biofilms, but did not lead to the expected high amount of biomass on the carrier, apparently because of the formation of weaker biofilms. The strength of the bio-films appeared to be related to the detachment forces applied during biofilm formation, in combination with the surface substrate loading. The biofilm morphology and biomass on carrier in the BAS reactor can be controlled using the carrier concentration, substrate loading rate and the superficial air velocity as parameters. The dynamics of biofilm formation during the start-up of a full-scale BAS reactor proved to be similar to heterotrophic biofilm formation in laboratory-scale reactors. This indicates that a model system on the laboratory scale can successfully be applied to predict dynamic phenomena in the full-scale reactor. Received: 31 March 1995/Received revision: 11 August 1995/Accepted: 22 August 1995  相似文献   

5.
Formation of biofilms in dairy membrane plants causes membrane pore blocking, product contamination and subsequent economic loss. To investigate the biofilm growth, two Klebsiella oxytoca strains, K. B006 and TR002, previously isolated from New Zealand dairy membrane plants, were grown both individually and combined on three types of ultrafiltration (UF) membranes in different concentrations of whey medium in biofilm reactors (CBR 90, BioSurface Technologies, Bozeman, USA). Biofilms of both the individual and combined strains grew on the membrane surfaces to levels of 4.9–7.99 log colony-forming units (CFU) cm−2 measured by standard plate counting after removing the cells by sonication. More biofilm grew on used polyethersulfone (PES) membranes than on new PES and polyvinylidene fluoride (PVDF) membranes. Both strains formed good biofilms, although K. B006 formed a denser biofilm than TR002. This corresponded to our previous study on the attachment of these organisms, where K. B006 attached in greater numbers than K. TR002. The dual strains produced a higher biofilm density than single strains on the new membranes. Biofilm density tended to increase with increased whey concentration. The saturated biofilm was approximately 108 CFU cm−2. PES membranes appeared to support biofilm growth less readily than did PVDF membranes and therefore may be the preferred material for UF membranes to reduce problems with microbial colonisation. Used membranes were more readily colonised with biofilm than were new membranes. Therefore, selecting a membrane type and monitoring membrane age will help manage biofilm development during UF.  相似文献   

6.
运用结晶紫染色定量法、生物被膜形态观察、生物被膜干重称量法、活菌定量计数法和细菌内活性氧检测法,评估氧化铁纳米酶和硫化铁纳米酶对鼠伤寒沙门菌生物被膜的影响及其机制.结果显示:鼠伤寒沙门菌S025株与这两类铁基纳米酶共孵育48h后,其生物被膜结晶紫染色吸光度值(A)、生物被膜厚度、生物被膜干重和活菌数量与未处理组相比均显著下降,活性氧水平显著上升,其中硫化铁纳米酶效果优于四氧化三铁纳米酶;在生物被膜形成后,加入铁基纳米酶处理0.5h、2h和12h,生物被膜结晶紫染色A值、生物被膜厚度、生物被膜干重和活菌数量与未处理组相比均显著下降,活性氧水平显著上升,硫化铁纳米酶效果同样优于四氧化三铁纳米酶.以上结果表明,铁基纳米酶通过调控鼠伤寒沙门菌胞内活性氧水平,不仅可以预防该菌的生物被膜形成,而且可以破坏已形成的生物被膜,本研究将有助于预防和治疗鼠伤寒沙门菌生物被膜引起的相关疾病.  相似文献   

7.
Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems – a fluidized‐bed biofilm reactor (FBBR) and a stirred tank reactor (STR) – using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg N · m–3 · d–1) was higher than in the STR, due to higher biomass concentration (10 kg BM · m–3 vs 1.2 kg BM m–3).  相似文献   

8.
Most microbes in nature are thought to exist as surface-associated communities in biofilms.1 Bacterial biofilms are encased within a matrix and attached to a surface.2 Biofilm formation and development are commonly studied in the laboratory using batch systems such as microtiter plates or flow systems, such as flow-cells. These methodologies are useful for screening mutant and chemical libraries (microtiter plates)3 or growing biofilms for visualization (flow cells)4. Here we present detailed protocols for growing Staphylococcus aureus in two additional types of flow system biofilms: the drip flow biofilm reactor and the rotating disk biofilm reactor.Drip flow biofilm reactors are designed for the study of biofilms grown under low shear conditions.5 The drip flow reactor consists of four parallel test channels, each capable of holding one standard glass microscope slide sized coupon, or a length of catheter or stint. The drip flow reactor is ideal for microsensor monitoring, general biofilm studies, biofilm cryosectioning samples, high biomass production, medical material evaluations, and indwelling medical device testing.6,7,8,9The rotating disk reactor consists of a teflon disk containing recesses for removable coupons.10 The removable coupons can by made from any machinable material. The bottom of the rotating disk contains a bar magnet to allow disk rotation to create liquid surface shear across surface-flush coupons. The entire disk containing 18 coupons is placed in a 1000 mL glass side-arm reactor vessel. A liquid growth media is circulated through the vessel while the disk is rotated by a magnetic stirrer. The coupons are removed from the reactor vessel and then scraped to collect the biofilm sample for further study or microscopy imaging. Rotating disc reactors are designed for laboratory evaluations of biocide efficacy, biofilm removal, and performance of anti-fouling materials.9,11,12,13Download video file.(49M, mov)  相似文献   

9.
Sabrina Behnke 《Biofouling》2013,29(6):635-647
Disinfection efficacy testing is usually done with planktonic cells or more recently, biofilms. While disinfectants are much less effective against biofilms compared to planktonic cells, questions regarding the disinfection tolerance of detached biofilm clusters remain largely unanswered. Burkholderia cepacia and Pseudomonas aeruginosa were grown in chemostats and biofilm tubing reactors, with the tubing reactor serving as a source of detached biofilm clusters. Chlorine dioxide susceptibility was assessed for B. cepacia and P. aeruginosa in these three sample types as monocultures and binary cultures. Similar doses of chlorine dioxide inactivated samples of chemostat and tubing reactor effluent and no statistically significant difference between the log10 reductions was found. This contrasts with chlorine, shown previously to be generally less effective against detached biofilm particles. Biofilms were more tolerant and required chlorine dioxide doses ten times higher than chemostat and tubing reactor effluent samples. A second species was advantageous in all sample types and resulted in lower log10 reductions when compared to the single species cultures, suggesting a beneficial interaction of the species.  相似文献   

10.
Biofilm-internal and external mass transfer resistance was investigated in laboratory-scale nitrifying suspended carrier reactors (SCR), demonstrating the importance of these factors for these increasingly popular reactor systems. Controlled respirometric experiments revealed that oxygen mass transfer resistance regulated the process performance up to a DO concentration of 20 mg L?1. External mass transfer exerts significant control over the overall reaction rate, thus biofilm models must adequately account for this resistance. Whilst carrier type and characteristics have some influence, biofilm structure seems primarily responsible for differences in mass transfer and nitrification performance. Heterogeneous biofilms grown under high ammonium loadings had much greater area-specific rates than the gel-like biofilms sourced from low loaded systems.Being a mass-transfer controlled process, the overall reaction rate of these SCR systems could be immediately increased by elevating the DO above normal operating levels (up to 20 mg L?1). Long-term oxygen deficiency in the lower biofilm sections does not negatively affect the biomass activity.  相似文献   

11.
Constructed ammonium oxidizing biofilms (CAOB) and constructed nitrite oxidizing biofilms (CNOB) were characterized during the bioremediation of a wastewater effluent. The maximum ammonium removal rate and removal efficiency in CAOB was 322 mg N-NH4+ m−3 d−1 and 96%, respectively, while in CNOB a maximum removal rate of 255 mg N-NH4+ m−3 d−1 and a removal efficiency of 76% was achieved. Both constructed biofilms on low-density polyester Dacron support achieved removal efficiencies higher than that of the concentrations normally present in reactors without constructed biofilms (P < 0.05). Nitrifying bacteria from the constructed biofilms cultures were typed by sequencing 16S rRNA genes that had been amplified by PCR from genomic DNA. Analysis of enrichment biofilms has therefore provided evidence of high removal of ammonium and the presence of Nitrosomonas eutropha, N. halophila and N. europaea in CAOB, while in CNOB Nitrobacter hamburgensis, N. winogradskyi and N. alkalicus were identified according to 16S rRNA gene sequences comparison. The biofilm reactors were nitrifying over the whole experimental period (15 days), showing a definite advantage of constructed biofilms for enhancing a high biomass concentration as evidenced by environmental electron microscopic analysis (ESEM). Our research demonstrates that low-density polyester Dacron can be effectively used for the construction of nitrifying biofilms obtaining high removal efficiencies of nitrogen in a relatively short time from municipal effluents from wastewater treatment plants. CAOB and CNOB are potentially promissory for the treatment of industrial wastewaters that otherwise requires very large and expensive reactors for efficient bioremediation of effluents.  相似文献   

12.
Hye Young Yoon 《Biofouling》2017,33(10):917-926
In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner’s 2A (R2A) for 10 days, and were subsequently stored at ?70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 105 CFU cm?2 and 10–14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.  相似文献   

13.
The photosynthetic performance of an epilithic cyano-bacterial biofilm was studied in relation to the in situ light field by the use of combined microsensor measurements of O2, photosynthesis, and spectral scalar irradiance. The high density of the dominant filamentous cyanobacteria (Oscillatoria sp.) embedded in a matrix of exopolymers and bacteria resulted in a photic zone of < 0.7 mm. At the biofilm surface, the prevailing irradiance and spectral composition were significantly different from the incident light. Multiple scattering led to an intensity maximum for photic light (400–700 nm) of ca. 120% of incident quantum irradiance at the biofilm surface. At the bottom of the euphotic zone in the biofilm, light was attenuated strongly to < 5–10% of the incident surface irradiance. Strong spectral signals from chlorophyll a (440 and 675 nm) and phycobilins (phycoerythrin 540–570 nm, phycocyanin 615–625 nm) were observed as distinct maxima in the scalar irradiance attenuation spectra in the upper 0.0–0.5 mm of the biofilm. The action spectrum for photosynthesis in the cyanobacterial layer revealed peak photosynthetic activity at absorption wavelengths of phycobilins, whereas only low photosynthesis rates were induced by light absorption of carotenoids (450–550 nm). Respiration rates in light- and dark-incubated biofilms were determined using simple flux calculations on measured O2 concentration profiles and photosynthetic rates. A significantly higher areal O2 consumption was found in illuminated biofilms than in dark-incubated biofilms. Although photorespiration accounted for part of the increase, the enhanced areal O2 consumption of illuminated biofilms could also be ascribed to a deeper oxygen penetration in light as well as an enhanced volumetric O2 respiration in and below the photic zone. Gross photosynthesis was largely unaffected by increasing flow velocities, whereas the O2 flux out of the photic zone, that is, net photosynthesis, increased with flow velocity. Consequently, the amount of produced O2 consumed within the biofilm decreased with increasing flow velocity. Our data indicated a close coupling of photosynthesis and respiration in biofilms, where the dissolved inorganic carbon requirement of the photo-synthetic population may largely be covered by the respiration of closely associated populations of heterotrophic bacteria consuming a significant part of the photosynthetically produced oxygen and organic carbon.  相似文献   

14.
The link between nitritation success in a membrane‐aerated biofilm reactor (MABR) and the composition of the initial ammonia‐ and nitrite‐oxidizing bacterial (AOB and NOB) population was investigated. Four identically operated flat‐sheet type MABRs were initiated with two different inocula: from an autotrophic nitrifying bioreactor (Inoculum A) or from a municipal wastewater treatment plant (Inoculum B). Higher nitritation efficiencies (NO2‐N/NH4+‐N) were obtained in the Inoculum B‐ (55.2–56.4%) versus the Inoculum A‐ (20.2–22.1%) initiated reactors. The biofilms had similar oxygen penetration depths (100–150 µm), but the AOB profiles [based on 16S rRNA gene targeted real‐time quantitative PCR (qPCR)] revealed different peak densities at or distant from the membrane surface in the Inoculum B‐ versus A‐initiated reactors, respectively. Quantitative fluorescence in situ hybridization (FISH) revealed that the predominant AOB in the Inoculum A‐ and B‐initiated reactors were Nitrosospira spp. (48.9–61.2%) versus halophilic and halotolerant Nitrosomonas spp. (54.8–63.7%), respectively. The latter biofilm displayed a higher specific AOB activity than the former biofilm (1.65 fmol cell?1 h?1 versus 0.79 fmol cell?1 h?1). These observations suggest that the AOB and NOB population compositions of the inoculum may determine dominant AOB in the MABR biofilm, which in turn affects the degree of attainable nitritation in an MABR.  相似文献   

15.
The Raman spectra, water content, and biomass density of wild-type (WT) Pseudomonas aeruginosa PAO1, small colony variant (SCV) PAO1, and Pseudoalteromonas sp. NCIMB 2021 biofilms were compared in order to determine their variation with strain and species. Living, fully submerged biofilms were analyzed in situ by confocal Raman microspectroscopy for up to 2 weeks. Water to biomass ratios (W/BRs), which are the ratios of the O–H stretching vibration of water at 3,450 cm−1 to the C–H stretching band characteristic of biomass at 2,950 cm−1, were used to estimate the biomass density and cell density by comparison with W/BRs of protein solutions and bacterial suspensions, respectively, on calibration curves. The hydration within SCV biofilm colonies was extremely heterogeneous whereas W/BRs were generally constant in young WT biofilm colonies. The mean biomass in biofilm colonies of WT or colony cores of SCV was typically equivalent to 16% to 27% protein (w/v), but was 10% or less for NCIMB 2021. The corresponding cell densities were 7.5 to >10 × 1010 cfu mL−1 for SCV, while the maximum cell density for NCIMB biofilms was 2.8 × 1010 cfu mL−1.  相似文献   

16.
The biofilm thickness in membrane biofilm reactors (MBfRs) is an important factor affecting system performance because excessive biofilm formation on the membrane surface inhibits gas diffusion to the interior of the biofilm, resulting in a significant reduction in the performance of contaminant removal. This study provides innovative insights into the control of biofilm thickness in O2-based MBfRs by using the quorum quenching (QQ) method. The study was carried out in MBfRs operated at different gas pressures and hydraulic retention times (HRTs) using QQ beads containing Rhodococcus sp. BH4 at different amounts. The highest performance was observed in reactors operated with 0.21 ml QQ bead/cm2 membrane surface area, 12 HRTs and 1.40 atm. Over this period, the performance increase in chemical oxygen demand (COD) removal was 25%, while the biofilm thickness on the membrane surface was determined to be 250 μm. Moreover, acetate and equivalent oxygen flux results reached 6080 and 10 640 mg·m−2·d−1 maximum values, respectively. The extracellular polymeric substances of the biofilm decreased significantly with the increase of gas pressure and QQ beads amount. Polymerase chain reaction denaturing gradient gel electrophoresis results showed that the microbial community in the MBfR system changed depending on operating conditions and bead amount. The results showed that the QQ method was an effective method to control the biofilm thickness in MBfR and provide insights for future research.  相似文献   

17.
Water in healthcare environments can be a source for healthcare-associated infections (HAI). However, information on the exposure risk to opportunistic pathogens in potable water distribution systems (PWDS) is lacking. Laboratory studies characterizing the interaction of opportunistic pathogens with biofilms are needed to understand their role in water systems within healthcare facilities. A stable, repeatable, PWDS multi-species biofilm model comprising Sphingomonas paucimobilis, Methylobacterium sp., Delftia acidovorans, and Mycobacterium mucogenicum was developed in the CDC Biofilm Reactor (CBR), reaching 6 log10 CFU cm?2 within 6 days. The model was used to investigate the interaction of the opportunistic pathogen M. mucogenicum with the other species, and to determine the efficacy of monochloramine (NH2Cl) as a disinfectant against 2-week-old biofilms. Addition of 1 or 2 mg l?1 NH2Cl resulted in the same or an increased log density of viable M. mucogenicum in the biofilm while inactivating some of the Proteobacteria. Although M. mucogenicum preferentially resided in the biofilm, NH2Cl exposure caused release of viable M. mucogenicum from the biofilm into the water. Additional studies with this model should determine if sodium hypochlorite has a comparative effect and if other nontuberculous mycobacteria (NTM) respond to NH2Cl similarly.  相似文献   

18.
The ability to directly modify native and established biofilms has enormous potential in understanding microbial ecology and application of biofilm in 'real-world' systems. However, efficient genetic transformation of established biofilms at any scale remains challenging. In this study, we applied an ultrasound-mediated DNA delivery (UDD) technique to introduce plasmid to established non-competent biofilms in situ. Two different plasmids containing genes coding for superfolder green fluorescent protein (sfGFP) and the flavin synthesis pathway were introduced into established bacterial biofilms in microfluidic flow (transformation efficiency of 3.9 ± 0.3 × 10-7 cells in biofilm) and microbial fuel cells (MFCs), respectively, both employing UDD. Gene expression and functional effects of genetically modified bacterial biofilms were observed, where some cells in UDD-treated Pseudomonas putida UWC1 biofilms expressed sfGFP in flow cells and UDD-treated Shewanella oneidensis MR-1 biofilms generated significantly (P < 0.05) greater (61%) bioelectricity production (21.9 ± 1.2 µA cm−2) in MFC than a wild-type control group (~ 13.6 ± 1.6 µA cm−2). The effects of UDD were amplified in subsequent growth under selection pressure due to antibiotic resistance and metabolism enhancement. UDD-induced gene transfer on biofilms grown in both microbial flow cells and MFC systems was successfully demonstrated, with working volumes of 0.16 cm3 and 300 cm3, respectively, demonstrating a significant scale-up in operating volume. This is the first study to report on a potentially scalable direct genetic engineering method for established non-competent biofilms, which can be exploited in enhancing their capability towards environmental, industrial and medical applications.  相似文献   

19.
The influence of dissolved oxygen concentration on the nitrification kinetics was studied in the circulating bed reactor (CBR). The study was partly performed at laboratory scale with synthetic water, and partly at pilot scale with secondary effluent as feed water. The nitrification kinetics of the laboratory CBR as a function of the oxygen concentration can be described according to the half order and zero order rate equations of the diffusion-reaction model applied to porous catalysts. When oxygen was the rate limiting substrate, the nitrification rate was close to a half order function of the oxygen concentration. The average oxygen diffusion coefficient estimated by fitting the diffusion-reaction model to the experimental results was around 66% of the respective value in water. The experimental results showed that either the ammonia or the oxygen concentration could be limiting for the nitrification kinetics. The latter occurred for an oxygen to ammonia concentration ratio below 1.5–2 gO2/gN-NH4 + for both laboratory and pilot scale reactors. The volumetric oxygen mass transfer coefficient (k L a) determined in the laboratory scale reactor was 0.017?s?1 for a superficial air velocity of 0.02?m s?1, and the one determined in the pilot scale reactor was 0.040?s?1 for a superficial air velocity of 0.031?m?s?1. The k L a for the pilot scale reactor did not change significantly after biofilm development, compared to the value measured without biofilm.  相似文献   

20.
 Lipid phosphate, which is a measure of viable biomass, was determined using biofilm samples from three different laboratory-scale reactors. The analysis procedure proposed in the literature was modified and tested for suitability in experiments with biofilm reactors. The microbial contents of the biofilms studied are compared in three types of reactor. Received: 2 November 1994/Accepted: 23 January 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号