首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistent intestinal inflammation severely impairs intestinal integrity resulting in inflammatory bowel disease. Red raspberries (RB) are a rich source of bioactive compounds; their beneficial effect on the colitis protection was evaluated in the current study using a dextran sulfate sodium (DSS)-induced acute colitis mouse model. Six-week-old mice were fed a standard rodent research diet supplemented with RB (0 or 5% w/w, n=20 each group) for 6 weeks. At the 4th week of dietary treatment, approximately half of mice in each dietary group (n=12 each group) were subjected to 2.5% DSS induction for 6 days, followed by 6 days of recovery, to induce colitis. RB supplementation decreased body weight loss (P≤.01), disease activity index (P≤.01), and colon shortening (P≤.05) in DSS-treated mice. In addition, RB supplementation protected the colonic structure (P≤.01), associated with suppressed NF-κB signaling and reduced expression of inflammatory interleukin (IL)-1β, IL-6, IL-17, cyclooxegenase-2, and tumor necrosis factor-α in DSS-treated mice. RB supplementation reduced neutrophil infiltration, monocyte chemoattractant protein-1 mRNA expression, and xanthine oxidase content, but enhanced catalase content in DSS-treated mice. Consistently, RB supplementation reduced pore forming tight junction protein claudin-2, increased barrier strengthening claudin-3, zonula occluden-1 protein content and mucin (MUC)-2 mRNA level, and activated AMP-activated protein kinase (AMPK) in DSS-treated mice. In conclusion, dietary RB protected against inflammation and colitis symptoms induced by DSS, providing a promising dietary approach for the management of colitis.  相似文献   

2.
The effects of dietary taurine on the experimental colitis induced by dextran sulfate sodium (DSS) in mice were evaluated. C57BL/6 female mice were given 3% DSS in drinking water for 5 d to induce acute colitis. Taurine at 2% was added to the drinking water 5 d before and during the DSS-treatment to investigate its preventive effect. Taurine supplementation significantly attenuated the weight decrease, diarrhea severity, colon shortening, and the increase in the colonic tissue myeloperoxidase activity induced by DSS. Taurine also significantly inhibited the increase in the expression of a pro-inflammatory chemokine, macrophage inflammatory protein 2 (MIP-2), but not of interleukin (IL)-1beta or tumor necrosis factor (TNF)-alpha mRNA. Furthermore, taurine significantly protected the intestinal Caco-2 cell monolayers from the damage by macrophage-like THP-1 cells in an in vitro coculture system. These results suggest that taurine prevented DSS-induced colitis partly in association with (1) its inhibitory effects on the secretion of MIP-2 from the intestinal epithelial cells and on the infiltration of such inflammatory cells as neutrophils and (2) its cytoprotective functions on the epithelial barrier from the direct toxicity of DSS and from the inflammatory cell-induced injury.  相似文献   

3.
4.
Prostaglandin E2 plays important roles in the maintenance of colonic homeostasis. The recently identified prostaglandin E receptor (EP) 4–associated protein (EPRAP) is essential for an anti-inflammatory function of EP4 signaling in macrophages in vitro. To investigate the in vivo roles of EPRAP, we examined the effects of EPRAP on colitis and colitis-associated tumorigenesis. In mice, EPRAP deficiency exacerbated colitis induced by dextran sodium sulfate (DSS) treatment. Wild-type (WT) or EPRAP-deficient recipients transplanted with EPRAP-deficient bone marrow developed more severe DSS-induced colitis than WT or EPRAP-deficient recipients of WT bone marrow. In the context of colitis-associated tumorigenesis, both systemic EPRAP null mutation and EPRAP-deficiency in the bone marrow enhanced intestinal polyp formation induced by azoxymethane (AOM)/DSS treatment. Administration of an EP4-selective agonist, ONO-AE1-329, ameliorated DSS-induced colitis in WT, but not in EPRAP-deficient mice. EPRAP deficiency increased the levels of the phosphorylated forms of p105, MEK, and ERK, resulting in activation of stromal macrophages in DSS-induced colitis. Macrophages of DSS-treated EPRAP-deficient mice exhibited a marked increase in the expression of pro-inflammatory genes, relative to WT mice. By contrast, forced expression of EPRAP in macrophages ameliorated DSS-induced colitis and AOM/DSS-induced intestinal polyp formation. These data suggest that EPRAP in macrophages functions crucially in suppressing colonic inflammation. Consistently, EPRAP-positive macrophages were also accumulated in the colonic stroma of ulcerative colitis patients. Thus, EPRAP may be a potential therapeutic target for inflammatory bowel disease and associated intestinal tumorigenesis.  相似文献   

5.
Milk fat globule-EGF factor 8 (MFG-E8) has been shown to play an important role in maintaining the integrity of the intestinal mucosa and to accelerate healing of the mucosa in septic mice. Herein, we (a) analyzed the expression of MFG-E8 in the gut of wild-type (WT) C57BL/6 (MFG-E8(+/+)) mice with and without dextran sulfate sodium (DSS)-induced colitis, (b) characterized the pathological changes in intestinal mucosa of MFG-E8(+/+) and MFG-E8(-/-) mice with DSS-induced colitis and (c) examined the therapeutic role of MFG-E8 in inflammatory bowel disease by using DSS-induced colitis model. Our data documented that there was an increase in colonic and rectal MFG-E8 expression in MFG-E8(+/+) mice during the development of DSS colitis. MFG-E8 levels in both tissues decreased to below baseline during the recovery phase in mice with colitis. Changes in MFG-E8 gene expression correlated to the levels of inflammatory response and crypt-epithelial injury in both colonic and rectal mucosa in MFG-E8(+/+) mice. MFG-E8(-/-)mice developed more severe crypt-epithelial injury than MFG-E8(+/+) mice during exposure to DSS with delayed healing of intestinal epithelium during the recovery phase of DSS colitis. Administration of MFG-E8 during the recovery phase ameliorated colitis and promoted mucosal repair in both MFG-E8(-/-) and MFG-E8(+/+) mice, indicating that lack of MFG-E8 causes increased susceptibility to colitis and delayed mucosal healing. These data suggest that MGF-E8 is an essential protective factor for gut epithelial homeostasis, and exogenous administration of MFG-E8 may represent a novel therapeutic target in inflammatory bowel disease.  相似文献   

6.
Gut microbiota play an important part in the pathogenesis of mucosal inflammation, such as inflammatory bowel disease (IBD). However, owing to the complexity of the gut microbiota, our understanding of the roles of commensal and pathogenic bacteria in the maintenance of immune homeostasis in the gut is evolving only slowly. Here, we evaluated the role of gut microbiota and their secreting extracellular vesicles (EV) in the development of mucosal inflammation in the gut. Experimental IBD model was established by oral application of dextran sulfate sodium (DSS) to C57BL/6 mice. The composition of gut microbiota and bacteria-derived EV in stools was evaluated by metagenome sequencing using bacterial common primer of 16S rDNA. Metagenomics in the IBD mouse model showed that the change in stool EV composition was more drastic, compared to the change of bacterial composition. Oral DSS application decreased the composition of EV from Akkermansia muciniphila and Bacteroides acidifaciens in stools, whereas increased EV from TM7 phylum, especially from species DQ777900_s and AJ400239_s. In vitro pretreatment of A. muciniphila-derived EV ameliorated the production of a pro-inflammatory cytokine IL-6 from colon epithelial cells induced by Escherichia coli EV. Additionally, oral application of A. muciniphila EV also protected DSS-induced IBD phenotypes, such as body weight loss, colon length, and inflammatory cell infiltration of colon wall. Our data provides insight into the role of gut microbiota-derived EV in regulation of intestinal immunity and homeostasis, and A. muciniphila-derived EV have protective effects in the development of DSS-induced colitis.  相似文献   

7.
Xia XM  Wang FY  Zhou J  Hu KF  Li SW  Zou BB 《PloS one》2011,6(11):e27282
Ulcerative colitis is a gastrointestinal disorder characterized by local inflammation and impaired epithelial barrier. Previous studies demonstrated that CXC chemokine receptor 4 (CXCR4) antagonists could reduce colonic inflammation and mucosal damage in dextran sulfate sodium (DSS)-induced colitis. Whether CXCR4 antagonist has action on intestinal barrier and the possible mechanism, is largely undefined. In the present study, the experimental colitis was induced by administration of 5% DSS for 7 days, and CXCR4 antagonist AMD3100 was administered intraperitoneally once daily during the study period. For in vitro study, HT-29/B6 colonic cells were treated with cytokines or AMD3100 for 24 h until assay. DSS-induced colitis was characterized by morphologic changes in mice. In AMD3100-treated mice, epithelial destruction, inflammatory infiltration, and submucosal edema were markedly reduced, and the disease activity index was also significantly decreased. Increased intestinal permeability in DSS-induced colitis was also significantly reduced by AMD3100. The expressions of colonic claudin-1, claudin-3, claudin-5, claudin-7 and claudin-8 were markedly decreased after DSS administration, whereas colonic claudin-2 expression was significantly decreased. Treatment with AMD3100 prevented all these changes. However, AMD3100 had no influence on claudin-3, claudin-5, claudin-7 and claudin-8 expression in HT-29/B6 cells. Cytokines as TNF-α, IL-6, and IFN-γ increased apoptosis and monolayer permeability, inhibited the wound-healing and the claudin-3, claudin-7 and claudin-8 expression in HT-29/B6 cells. We suggest that AMD3100 acted on colonic claudin expression and intestinal barrier function, at least partly, in a cytokine-dependent pathway.  相似文献   

8.
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.  相似文献   

9.
Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immune responses to microflora in genetically susceptible hosts. A major challenge for IBD research is to develop new strategies for treating this disease. Berberine, an alkaloid derived from plants, is an alternative medicine for treating bacterial diarrhea and intestinal parasite infections. Recent studies suggest that berberine exerts several other beneficial effects, including inducing anti-inflammatory responses. This study determined the effect of berberine on treating dextran sulfate sodium (DSS)-induced intestinal injury and colitis in mice. Berberine was administered through gavage to mice with established DSS-induced intestinal injury and colitis. Clinical parameters, intestinal integrity, proinflammatory cytokine production, and signaling pathways in colonic macrophages and epithelial cells were determined. Berberine ameliorated DSS-induced body weight loss, myeloperoxidase activity, shortening of the colon, injury, and inflammation scores. DSS-upregulated proinflammatory cytokine levels in the colon, including TNF, IFN-γ, KC, and IL-17 were reduced by berberine. Berberine decreased DSS-induced disruption of barrier function and apoptosis in the colon epithelium. Furthermore, berberine inhibited proinflammatory cytokine production in colonic macrophages and epithelial cells in DSS-treated mice and promoted apoptosis of colonic macrophages. Activation of signaling pathways involved in stimulation of proinflammatory cytokine production, including MAPK and NF-κB, in colonic macrophages and epithelial cells from DSS-treated mice was decreased by berberine. In summary, berberine promotes recovery of DSS-induced colitis and exerts inhibitory effects on proinflammatory responses in colonic macrophages and epithelial cells. Thus berberine may represent a new therapeutic approach for treating gastrointestinal inflammatory disorders.  相似文献   

10.
Epithelial neutrophil-activating peptide-78 (ENA-78), a member of the CXC chemokine subfamily, is induced by inflammatory cytokines in human colonic enterocyte cell lines and increased in the colon of patients with inflammatory bowel disease (IBD). Lipopolysaccharide-induced CXC-chemokine (LIX) was recently identified as the murine homolog of ENA-78. Here we show that, similar to ENA-78, inflammatory cytokine stimulation of a murine colonic epithelial cell line, MODE-K, results in increased LIX expression. Consistent with the expression pattern of ENA-78 in IBD, LIX expression is significantly increased in mice with colitis induced by the ingestion of dextran sodium sulfate (DSS). Treating mice with antisense oligonucleotides to LIX via rectal enema delivery before DSS treatment results in colonic enterocyte uptake and a significant reduction in neutrophil infiltration and severity of colitis. These findings indicate that LIX plays an integral role in the pathogenesis of DSS-induced colitis. Similarly, enterocyte-derived CXC chemokines may play a key role in regulating neutrophil recruitment and intestinal injury in IBD. The intracolonic administration of ENA-78 antisense oligonucleotides may be effective in treating distal ulcerative colitis in humans.  相似文献   

11.
Ulcerative colitis is the typical progression of chronic inflammatory bowel disease. Amino acids, particularly tryptophan, have been reported to exert a protective effect against colitis induced by dextran sodium sulfate (DSS), but the precise underlying mechanisms remain incompletely clarified. Tryptophan metabolites are recognized to function as endogenous ligands for aryl hydrocarbon receptor (Ahr), which is a critical regulator of inflammation and immunity. Thus, we conducted this study to investigate whether dietary tryptophan supplementation protects against DSS-induced colitis by acting through Ahr. Female wild-type (WT) and Ahr-deficient (knockout; KO) mice (10–12 weeks old) were divided into four groups and fed either a control or 0.5% tryptophan diet. The tryptophan diet ameliorated DSS-induced colitis symptoms and severity in WT mice but not in KO mice, and the diet reduced the mRNA expression of Il-6, Tnfα, Il-1β and the chemokines Ccl2, Cxcl1 and Cxcl2 in the WT groups. Furthermore, Il-22 and Stat3 mRNA expression in the colon was elevated in WT mice fed with the tryptophan diet, which mainly protected epithelial layer integrity, and Ahr also modulated immune homeostasis by regulating Foxp3 and Il-17 mRNA expression. These data suggest that tryptophan-containing diet might ameliorate DSS-induced acute colitis and regulate epithelial homeostasis through Ahr. Thus, tryptophan could serve as a promising preventive agent in the treatment of ulcerative colitis.  相似文献   

12.
Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.  相似文献   

13.
Exposure to dextran sulfate sodium (DSS) induces acute colitis, which is normally resolved after DSS removal. To study chronicity, mice are typically subjected to three to five cycles of weekly DSS exposures, each followed by a 1- to 2-wk rest period. Here, we describe a novel and convenient way of inducing chronic, progressive colitis by a single exposure to DSS. C57BL/6 mice exposed to DSS for 5 days developed acute colitis that progressed to severe chronic inflammation. The plasma haptoglobin levels remained high during the chronic phase, showing that the inflammation was active. Surprisingly, the mice regained their original weight along with the progression of colitis, and the only apparent symptom was loose feces. Histopathological changes 4 wk after DSS removal were dense infiltrates of mononuclear cells, irregular epithelial structure, and persistent deposits of collagen. A progressive production of the cytokines IL-1beta, IL-12 p70, and IL-17 correlated with the extensive cellular infiltration, whereas high IFN-gamma production was mainly found late in the chronic phase. Similar to C57BL/6 mice, BALB/c mice exposed to 5 days of DSS developed acute colitis as previously described. The acute colitis was accompanied by elevated plasma levels of haptoglobin and increased colonic levels of IL-1alpha/beta, IL-6, IL-18, and granulocyte colony-stimulating factor. However, soon after DSS removal, BALB/c mice recovered and were symptom free within 2 wk and completely recovered 4 wk after DSS removal in terms of histopathology, haptoglobin levels, and local cytokine production. In summary, these data stress the effect of genetic background on the outcome of DSS provocation. We believe that the present protocol to induce chronic colitis in C57BL/6 mice offers a robust model for validating future therapies for treatment of inflammatory bowel disease.  相似文献   

14.
Absence of stearoyl-CoA desaturase-1 (SCD1) in mice leads to chronic inflammation of the skin and increased susceptibility to atherosclerosis, while also increasing plasma inflammatory markers. A recent report suggested that SCD1 deficiency also increases disease severity in a mouse model of inflammatory bowel disease, induced by dextran sulfate sodium (DSS). However, SCD1-deficient mice are known to consume increased amounts of water, which would also be expected to increase the intake of DSS-treated water. The aim of this study was to determine the effect of SCD1 deficiency on DSS-induced acute colitis with DSS dosing adjusted to account for genotype differences in fluid consumption. Wild-type controls were treated with 3.5% DSS for 5 days to induce moderately severe colitis, while the concentration of DSS given to SCD1-deficient mice was lowered to 2.5% to control for increased fluid consumption. Colonic inflammation was assessed by clinical and histological scoring. Although SCD1-deficient mice consumed a total intake of DSS that was greater than that of wild-type controls, colonic inflammation, colon length and fecal blood were not altered by SCD1-deficiency in DSS-induced colitis, while diarrhea and total weight loss were modestly improved. Despite SCD1 deficiency leading to chronic inflammation of the skin and increased susceptibility to atherosclerosis, it does not accelerate inflammation in the DSS-induced model of acute colitis when DSS intake is controlled. These observations suggest that SCD1 deficiency does not play a significant role in colonic inflammation in this model.  相似文献   

15.
The role of TLRs and MyD88 in the maintenance of gut integrity in response to dextran sodium sulfate (DSS)-induced colitis was demonstrated recently and led to the conclusion that the innate immune response to luminal commensal flora provides necessary signals that facilitate epithelial repair and permits a return to homeostasis after colonic injury. In this report, we demonstrate that a deficit in a single neutrophil chemokine, CXCL1/KC, also results in a greatly exaggerated response to DSS. Mice with a targeted mutation in the gene that encodes this chemokine responded to 2.5% DSS in their drinking water with significant weight loss, bloody stools, and a complete loss of gut integrity in the proximal and distal colon, accompanied by a predominantly mononuclear infiltrate, with few detectable neutrophils. In contrast, CXCL1/KC(- /-) and wild-type C57BL/6J mice provided water showed no signs of inflammation and, at this concentration of DSS, wild-type mice showed only minimal histopathology, but significantly more infiltrating neutrophils. This finding implies that neutrophil infiltration induced by CXCL1/KC is an essential component of the intestinal response to inflammatory stimuli as well as the ability of the intestine to restore mucosal barrier integrity.  相似文献   

16.
Dietary supplementation with conjugated linoleic acid (CLA) has been proposed for weight management and to prevent gut inflammation. However, some animal studies suggest that supplementation with CLA leads to the development of nonalcoholic fatty liver disease. The aims of this study were to test the efficiency of CLA in preventing dextran sulfate sodium (DSS)-induced colitis, to analyze the effects of CLA in the liver function, and to access putative liver alterations upon CLA supplementation during colitis. So, C57BL/6 mice were supplemented for 3 weeks with either control diet (AIN-G) or 1% CLA-supplemented diet. CLA content in the diet and in the liver of mice fed CLA containing diet were accessed by gas chromatography. On the first day of the third week of dietary treatment, mice received ad libitum a 1.5%–2.5% DSS solution for 7 days. Disease activity index score was evaluated; colon and liver samples were stained by hematoxylin and eosin for histopathology analysis and lamina propria cells were extracted to access the profile of innate cell infiltrate. Metabolic alterations before and after colitis induction were accessed by an open calorimetric circuit. Serum glucose, cholesterol, triglycerides and alanine aminotransaminase were measured; the content of fat in liver and feces was also accessed. CLA prevented weight loss, histopathologic and macroscopic signs of colitis, and inflammatory infiltration. Mice fed CLA-supplemented without colitis induction diet developed steatosis, which was prevented in mice with colitis probably due to the higher lipid consumption as energy during gut inflammation. This result suggests that CLA is safe for use during gut inflammation but not at steady-state conditions.  相似文献   

17.
Doublecortin-like kinase 1 (Dclk1), a microtubule-associated kinase, marks the fifth lineage of intestinal epithelial cells called tuft cells that function as tumor stem cells in Apc mutant models of colon cancer. In order to determine the role of Dclk1 in dextran sulfate sodium (DSS) induced colonic inflammation both intestinal epithelial specific Dclk1 deficient (VillinCre;Dclk1f/f) and control (Dclk1f/f) mice were fed 3% DSS in drinking water for 9 days, allowed to recover for 2 days, and killed. The clinical and histological features of DSS-induced colitis were scored and immunohistochemical, gene expression, pro-inflammatory cytokines/chemokines, and immunoblotting analyses were used to examine epithelial barrier integrity, inflammation, and stem and tuft cell features. In DSS-induced colitis, VillinCre;Dclk1f/f mice demonstrated exacerbated injury including higher clinical colitis scores, increased epithelial barrier permeability, higher levels of pro-inflammatory cytokines and chemokines, decreased levels of Lgr5, and dysregulated Wnt/b-Catenin pathway genes. These results suggest that Dclk1 plays an important role in regulating colonic inflammatory response and colonic epithelial integrity.  相似文献   

18.
Cho JY  Hwang JK  Chun HS 《Life sciences》2011,88(19-20):864-870
AimsThe aim of this study was to investigate the effects of xanthorrhizol (5-(1,5-dimethyl-4-hexenyl)-2-methylphenol, XA) in a mouse model of dextran sulfate sodium (DSS)-induced colitis.Main methodsExperimental colitis was induced by exposing male BALB/c mice to 5% DSS in drinking water for 7 days. XA (10 or 100 mg/kg) was administered orally once a day, together with the DSS. We evaluated body weight, colon length, histological changes, and myeloperoxidase (MPO) activity. A cDNA microarray was used to assess the gene expression profiles that were affected by XA and DSS treatment and a co-citation analysis was used to examine the biological relationship between XA-responsive genes and colitis.Key findingsDecreased body weight, shortened colon length, and damaged colon were observed in the group that was exposed to DSS. Oral administration of XA (10 or 100 mg/kg) rescued these symptomatic and histopathological features. The DSS-induced increase in MPO activity, which was used as an index of neutrophil infiltration, was significantly decreased after treatment with XA. Microarray analysis revealed that XA treatment regulated the expression of 34 genes that were altered by exposure to DSS, and that these XA-responsive genes were associated with colonic inflammation. Furthermore, co-citation analysis and graphing of XA-responsive genes revealed a network associated with the gene that encodes for MPO.SignificanceThese results suggest that XA attenuates acute DSS-induced colitis, possibly by modulating the expression of genes mostly associated with colonic inflammation.  相似文献   

19.
Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80(+)CD11b(+)CCR2(+)Ly6C(high) inflammatory monocytes into the colon. F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C(high) intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Ccl4, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80(+)CD11b(+)CCR2(+)Ly6C(high) monocyte recruitment to the colon in CCR2(-/-) mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C(high)CCR2(+) inflammatory monocyte/macrophage-derived CCL11.  相似文献   

20.

Background

High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. Advances in targeting HMGB1 represent a major challenge to improve the treatment of acute/chronic inflammation.

Aim

This study is aimed at verifying whether the inhibition of HMGB1 through dipotassium glycyrrhizate (DPG) is a good strategy to reduce intestinal inflammation.

Methods

Human colon adenocarcinoma cell line, HT29, human epithelial colorectal adenocarcinoma, Caco2, and murine macrophage cell line, RAW 264.7, were cultured to investigate the effect of DPG on the secretion of HMGB1. Acute colitis was induced in C57BL/6 mice through administration of 3% dextran sodium sulphate (DSS); a combined treatment with DSS and 3 or 8 mg/kg/day DPG was used to investigate the effects of DPG on intestinal inflammation. Animals were euthanized at seventh day and colonic samples underwent molecular and histological analyses.

Results

DPG significantly reduces in vitro the release of HMGB1 in the extracellular matrix as well as expression levels of pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6, by inhibiting HMGB1. Moreover, DPG significantly decreases the severity of DSS-induced colitis in mice. Murine colonic samples show decreased mRNA levels of pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6, as well as HMGB1 receptors, RAGE and TLR4. Finally, HMGB1, abundantly present in the feces of mice with DSS-induced colitis, is strongly reduced by DPG.

Conclusions

HMGB1 is an early pro-inflammatory cytokine and an active protagonist of mucosal gut inflammation. DPG exerts inhibitory effects against HMGB1 activity, significantly reducing intestinal inflammation. Thus, we reason that DPG could represent an innovative tool for the management of human intestinal inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号