首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Skeletal muscle protein turnover has been examined in thyroidectomized rats treated with 0, 0.3, 0.75, 2, 20 and 100 micrograms triidothyronine/day for 7 days by implanted osmotic minipump. Protein synthesis in gastrocnemius, plantaris and soleus muscle were measured in vivo by the constant infusion method and protein degradation estimated as the difference between gross and net rates of synthesis. Serum levels of triidothyronine (T3) and insulin were also measured in addition to oxygen consumption rates in some cases. Compared with untreated intact rats muscle growth rates were unchanged at 0.3, 0.75 and 2 micrograms T3/day and, judging by plasma T3 levels, 0.75 microgram T3/day was a replacement dose. Slowing of growth was evident in the untreated thyroidectomized rats mid-way through the 7 day experimental period (6-7 days after throidectomy). High doses of T3 (20 and 100 micrograms/day) promptly supressed growth but there was subsequent recovery. Protein synthesis and degradation were generally lower in the hypothyroid state and normal or elevated in the hyperthyroid state. The changes in protein synthesis were mediated by changes in both RNA concentration and RNA activity (protein synthesis per unit RNA). Gastrocnemius and plantaris muscles were most responsive in the hypothyroid range. Since protein synthesis is particularly depressed in these muscles in malnutrition, the fall in protein degradation induced by the lowered thyroid status in this condition will be an important adaptive response to conserve protein. The increased protein turnover in the hyperthyroid rats was most marked in the soleus muscle and it is argued that this is necessary to allow the changes in protein composition and metabolic character which occur in response to hyperthyroidism in this muscle.  相似文献   

3.
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids.  相似文献   

4.
5.
Fatty acid translocase (FAT/CD36) is a transport protein with a high affinity for long-chain fatty acids (LCFA). It was recently identified on rat skeletal muscle mitochondrial membranes and found to be required for palmitate uptake and oxidation. Our aim was to identify the presence and elucidate the role of FAT/CD36 on human skeletal muscle mitochondrial membranes. We demonstrate that FAT/CD36 is present in highly purified human skeletal mitochondria. Blocking of human muscle mitochondrial FAT/CD36 with the specific inhibitor sulfo-N-succimidyl-oleate (SSO) decreased palmitate oxidation in a dose-dependent manner. At maximal SSO concentrations (200 muM) palmitate oxidation was decreased by 95% (P<0.01), suggesting an important role for FAT/CD36 in LCFA transport across the mitochondrial membranes. SSO treatment of mitochondria did not affect mitochondrial octanoate oxidation and had no effect on maximal and submaximal carnitine palmitoyltransferase I (CPT I) activity. However, SSO treatment did inhibit palmitoylcarnitine oxidation by 92% (P<0.001), suggesting that FAT/CD36 may be playing a role downstream of CPT I activity, possibly in the transfer of palmitoylcarnitine from CPT I to carnitine-acylcarnitine translocase. These data provide new insight regarding human skeletal muscle mitochondrial fatty acid (FA) transport, and suggest that FAT/CD36 could be involved in the cellular and mitochondrial adaptations resulting in improved and/or impaired states of FA oxidation.  相似文献   

6.
The extent of binding of glycolytic enzymes to the particulate fraction of homogenates was measured in sheep hind muscles after electrical stimulation. As compared to the control muscles, stimulation led to significant increases in the amount of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase bound to the particulate fraction. The bindng of other glycolytic enzymes was not significantly altered. A servey of different hind limb muscles at variable rates of stimulation revealed that each muscle exhibited its own characteristic response pattern in terms of the level of increased enzyme binding. Generally, an increased stimulation rate led to greater enzyme adsorption. The increase in enzyme binding was rapidly reversible for it was shown that the amount of enzyme bound quickly returned to control values when the muscles were allowed to recover in the live anaesthetised animal following cessation of stimulation. Those muscles which exhibited increased enzyme binding were characterised by a marked loss of glycogen and accumulation of lactate suggesting that accelerated glycolytic flux was a necessary condition for the observation of increased enzyme binding. In support of this, enzyme adsorption was observed to be greatest on stimulation of ischemic muscles, whereas in trained muscles, or muscles with depleted glycogen stores induced by prior adrenalin treatment, the increased enzyme binding response was greatly diminished. It is concluded that the variable binding of key glycolytic enzymes has a role to play in the regulation of glycolytic behaviour in skeletal muscle.  相似文献   

7.
8.
Highly purified suspensions of parenchymal, endothelial and Kupffer cells were prepared from the rat liver. The respective roles of these cell classes in the degradation of proteins was investigated by analysing the cellular distribution of two lysomal proteases. The specific arginine naphthylamidase activity was 2 times higher in Kupffer cells compared with the nearly equal activities in endothelial and parenchymal cells. The specific activity of the important endopeptidase cathepsin D in endothelial and Kupffer cells was about 12 and 36 times higher, respectively, than the activity in parenchymal cells. These results are in agreement with an important role of Kupffer and endothelial cells in the degradation of proteins and protein containing material of exogenous origin.  相似文献   

9.
10.
11.
Isolated rat hepatocytes exhibit an insulin-like anabolic response to hypoosmotic incubation and a glucagon-like catabolic response to hyperosmotic incubation. Recently, a distinct glycogenic response to hypoosmotic treatment was likewise reported for cultured rat myotubes. The present study examines the effects of anisoosmolar exposure on glucose metabolism in freshly isolated rat soleus muscle strips. Under the same experimental conditions as used for cultured myotubes, hypoosmolarity reduced net glycogen synthesis to 52%, while hyperosmolarity stimulated glycogen storage to 231% of isoosmolar control (nmol glucose incorporated into glycogen g(-1) x h(-1): hypoosmolar, 34+/-3; isoosmolar, 65+/-8; hyperosmolar, 150+/-11; p<0.01 each vs. isoosmolar). The responses of native skeletal muscle to anisoosmolarity are therefore in opposition to what has been described for hepatocytes and cultured myotubes. Further experiments on rat skeletal muscle revealed that the observed lack of a glycogenic response to hypoosmolarity persisted independent of medium composition, specifically with regard to prevailing glucose and K+ concentrations. In conclusion, hypoosmotic exposure inhibits glycogen synthesis in isolated rat soleus muscle, which clearly argues against the hypothesis that osmotic changes and cell swelling may be physiologically relevant stimulators of muscle glycogen synthesis.  相似文献   

12.
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.  相似文献   

13.
14.
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 microM of palmitate did not affect cell viability but significantly reduced FA oxidation by approximately 26.5%, approximately 43.5%, approximately 50%, and approximately 47%, respectively. Interestingly, this occurred despite significant increases in AMPK ( approximately 2.5-fold) and ACC ( approximately 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity ( approximately 38-60%). Low concentrations of palmitate (50-100 microM) caused an increase ( approximately 30%) in CPT-1 activity. However, as the concentration of palmitate increased, CPT-1 activity decreased by approximately 32% after exposure for 8 h to 800 microM of palmitate. Although FA uptake was reduced ( approximately 35%) in cells exposed to increasing palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values approximately 2.3-, approximately 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 microM palmitate, respectively. Interestingly, myotubes exposed to 400 microM of palmitate for 1 h increased basal glucose uptake and glycogen synthesis by approximately 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8 h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake ( approximately 65%) and glycogen synthesis ( approximately 30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs, such as in obesity and Type 2 Diabetes.  相似文献   

15.
Nt-Methylhistidine, a non-reutilised amino acid present in some myofibrillar proteins, was radioactively labelled in vito with [Me-3H]methionine. The specific radioactivities of protein-bound methylhistidine and free methylhistidine in perfusate after perfusion of rat hind limbs taken from prelabelled rats was determined. The decrease in urinary methylhistidine activity with time was determined for rats similarly labelled. Comparison of the specific activities of free and bound methylhistidine and the non-linear semilogarithmic plot of urinary methylhistidine activity suggest that the myofibrillar protein catabolism, as indicated by methylhistidine release, may not be a simple exponential process. The possibility of non-random decay is discussed and an alternative model proposed.  相似文献   

16.
17.
18.
The response of tibial metaphyses to pharmacologic levels of vitamin D in uremic rats fed a low calcium diet was evaluated morphometrically. Uremic (5/6 nephrectomized) rats given vitamin D had increased percent metaphyseal hard tissue, trabecular surface perimeter and percent trabecular osteoid surface and reduced numbers of osteoblasts and osteoclasts per millimeter of trabecular perimeter compared to either uremic rats given placebo or sham-operated rats given vitamin D. It was concluded that the resistance of metaphyseal trabeculae in uremic rats to vitamin D was due in part to the increase in osteoid-covered surfaces which inhibited osteoclasis and subsequent remodeling. The pathogenesis of worsening osteomalacia as a consequence of vitamin D administration to uremic rats on a low calcium diet remains unclear.  相似文献   

19.
H2O2 production by skeletal muscle mitochondria oxidizing palmitoylcarnitine was examined under two conditions: the absence of respiratory chain inhibitors and the presence of myxothiazol to inhibit complex III. Without inhibitors, respiration and H2O2 production were low unless carnitine or malate was added to limit acetyl-CoA accumulation. With palmitoylcarnitine alone, H2O2 production was dominated by complex II (44% from site IIF in the forward reaction); the remainder was mostly from complex I (34%, superoxide from site IF). With added carnitine, H2O2 production was about equally shared between complexes I, II, and III. With added malate, it was 75% from complex III (superoxide from site IIIQo) and 25% from site IF. Thus complex II (site IIF in the forward reaction) is a major source of H2O2 production during oxidation of palmitoylcarnitine ± carnitine. Under the second condition (myxothiazol present to keep ubiquinone reduced), the rates of H2O2 production were highest in the presence of palmitoylcarnitine ± carnitine and were dominated by complex II (site IIF in the reverse reaction). About half the rest was from site IF, but a significant portion, ∼40 pmol H2O2·min−1·mg protein−1, was not from complex I, II, or III and was attributed to the proteins of β-oxidation (electron-transferring flavoprotein (ETF) and ETF-ubiquinone oxidoreductase). The maximum rate from the ETF system was ∼200 pmol H2O2·min−1·mg protein−1 under conditions of compromised antioxidant defense and reduced ubiquinone pool. Thus complex II and the ETF system both contribute to H2O2 productionduring fatty acid oxidation under appropriate conditions.  相似文献   

20.
BackgroundThe sarcomere structure of skeletal muscle is determined through multiple protein–protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization.MethodsC2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level.ResultsOur data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin.ConclusionsFor the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure.General significanceIn the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号