首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Enzymatic hydrolysis of cellulose is often conducted in batch processes in which hydrolytic products tend to inhibit enzyme activity. In this study, we report a method for continuous hydrolysis of carboxymethyl cellulose (CMC) by using cross-linked cellulase aggregate (XCA) trapped inside a membrane. XCA particles prepared by using a millifluidic reactor have a uniform size distribution around 350 nm. Because of their large size, XCA particles in solutions can be filtered through a polyethersulfone membrane to collect 87.1 ± 0.9% of XCA particles. The membrane with impregnated XCA can be used as a catalyst for hydrolysis of CMC in a continuous mode. When the CMC concentration is 1.0 g/l and the flow rate is 2 μl/min, 53.9% of CMC is hydrolyzed to reducing sugars. The membrane with XCA is very stable under continuously flowing solutions. After 72 h of reaction, 97.5% of XCA remains inside the membrane.  相似文献   

2.
Cell penetrating peptides (CPPs) have been extensively studied as vectors for cellular delivery of therapeutic molecules, yet the identity of their uptake routes remained unclear and is still under debate. In this study we provide new insights into CPP entry routes by quantitatively measuring the intracellular uptake of FAM-labeled Tat-peptide under rigorous kinetic and thermal conditions. The uptake of Tat-peptide between 4 and 15 °C corresponds to Q10 = 1.1, proceeding through a prompt (< 5 min), temperature-independent process, suggesting direct membrane translocation. At longer durations, Tat rate of uptake shows linear dependence on temperature with Q10 = 1.44, accompanied by activation energy Ea = 4.45 Kcal/mole. These values are significantly lower than those we found for the macropinocytosis probe dextran (Q10 = 2.2 and Ea = 7.2 Kcal/mole) which possesses an exponential dependence on temperature, characteristic of endocytosis processes. Tat-peptide and dextran do not interfere with each other's uptake rate and the ratio of Tat-peptide uptake to its extracellular concentration is ~ 15 times higher than that for dextran. In addition, Phloretin, a modulator of cell membrane dipole potential, is shown to increase dextran uptake but to reduce that of Tat. We conclude that the uptake of Tat differs from that of dextran in all parameters. Tat uptake proceeds by dual entry routes which differ by their energy dependence.  相似文献   

3.
In this study, a membrane biofilm reactor performance for toluene as a model pollutant is presented. A composite membrane consisting of a porous polyacrylonitrile (PAN) support layer coated with a very thin (0.3 μm) dense polydimethylsiloxane (PDMS) top layer was used. Batch experiments were performed to select an appropriate inocula (slaughterhouse wastewater treatment sludge with a specific toluene consumption rate of 118 ± 23 μg g?1 VSS L?1) among the three available sources of inoculums. The maximum elimination capacity gas-side reactor volume based (EC)v and membrane based (EC)m, max obtained were 609 g m?3 h?1 and 1.2 g m?2 h?1 respectively, which is much higher than other membrane bioreactors. Further experiments involved the study of the membrane biofilm reactor flexibility when operational parameters as temperature, loading rate etc. were modified. In all cases, the membrane biofilm reactor showed a rapid adaptation and new steady-states were obtained within hours. Overall, the results illustrate that membrane bioreactors can potentially be a good option for treatment of air pollutants such as toluene.  相似文献   

4.
Despite the great progress recently made in resolving their structures, investigation of the structural biology of membrane proteins still presents major challenges. Even with new technical advances such as lipidic cubic phase crystallisation, obtaining well-ordered crystals remains a significant hurdle in membrane protein X-ray crystallographic studies. As an alternative, electron microscopy has been shown to be capable of resolving > 3.5 Å resolution detail in membrane proteins of modest (~ 300 kDa) size, without the need for crystals. However, the conventional use of detergents for either approach presents several issues, including the possible effects on structure of removing the proteins from their natural membrane environment. As an alternative, it has recently been demonstrated that membrane proteins can be effectively isolated, in the absence of detergents, using a styrene maleic acid co-polymer (SMA). This approach yields SMA lipid particles (SMALPs) in which the membrane proteins are surrounded by a small disk of lipid bilayer encircled by polymer. Here we use the Escherichia coli secondary transporter AcrB as a model membrane protein to demonstrate how a SMALP scaffold can be used to visualise membrane proteins, embedded in a near-native lipid environment, by negative stain electron microscopy, yielding structures at a modest resolution in a short (days) timeframe. Moreover, we show that AcrB within a SMALP scaffold is significantly more active than the equivalent DDM stabilised form. The advantages of SMALP scaffolds within electron microscopy are discussed and we conclude that they may prove to be an important tool in studying membrane protein structure and function.  相似文献   

5.
《Process Biochemistry》2010,45(4):500-506
In this study, an approach to prepare immobilized metal affinity membrane (IMAM) with high metal ions and protein adsorption capacities was developed. In the process of coupling epichlorohydrin (EPI) to the regenerated cellulose membrane (RC membrane), NaOH concentration is found to be the most critical. With a lower NaOH concentration, only a minimal amount of EPI reacted to the RC membrane. When NaOH concentration was higher, the membrane was distorted, which caused a significant pressure drop in flow-through operation. To optimize the IMAM performance, an objective function was defined as the ratio of the model protein, penicillin G acylase (PGA), activity adsorbed on the membrane to the transmembrane pressure drop. According to the criterion, the optimal reaction conditions were found as follows: one RC membrane immersed in 20 ml, 1.4 M NaOH, 5 ml EPI and operated at 24 °C, 150 rpm for 14 h. Under this condition, the copper ions and PGA in IMAM were significantly increased to 75.5 ± 0.25 μmol/disc and 1.8 U/disc respectively. The adsorption for lysozyme on the prepared IMAM reached 1044 μg/cm2, the highest in the literature.  相似文献   

6.
《Process Biochemistry》2014,49(5):745-750
The present study was designed to investigate the effect of bromopropylate on its own transport rate, glycolysis and tricarboxylic acid cycle metabolite levels, adenine nucleotides, and membrane lipid peroxidation (LPO) as well as the activities of mitochondrial electron transport chain (ETC) enzymes in eukaryotic Trichoderma harzianum. The transport rate of bromopropylate reached a maximum level within the first 24 h of incubation for all studied concentrations. The succinate dehydrogenase (SDH) and cytochrome c oxidase (CCO) activities reached their maxima at 72 h for 2.5 and 10 mg/L of bromopropylate, respectively. In addition, the intracellular pyruvate levels increased for bromopropylate concentrations up to 2.5 mg/L. The maximum intracellular α-ketoglutarate level was determined at 5 mg/L, while the intracellular fumarate and citrate levels reached their maximums at 7.5 mg/L of bromopropylate. The variations in the adenine nucleotide levels showed a positive correlation with both α-ketoglutarate and fumarate levels. Nevertheless, the LPO levels increased with increasing bromopropylate concentrations. These results may indicate that the membrane becomes more damaged from an impaired respiratory chain, which may then cause an increase in electron leakage.  相似文献   

7.
We have recently discovered that small antimicrobial β2,2-amino acid derivatives (Mw < 500) also display activity against cancer cells. To explore their drug potential, we have presently investigated the mechanisms of action of two derivatives BAA-1 (IC50 8.1 μg/ml) and BAA-2 (IC50 3.8 μg/ml) on Ramos human Burkitt's lymphoma cells. Studies using annexin-V-FITC/propidium iodide staining and flow cytometry revealed essential mechanistic differences, which was confirmed by screening for active caspases, investigation of mitochondrial membrane potential, and electron microscopy studies. Our results indicated that BAA-1 killed Ramos cells by destabilizing the cell membrane, whereas BAA-2 caused apoptosis by the mitochondrial-mediated pathway.  相似文献   

8.
A perfluoropolymer (PFP) membrane has been prepared for use in vapor permeation to separate aqueous ethanol mixtures produced from rice straw with xylose-assimilating recombinant Saccharomyces cerevisiae. PFP membranes commonly have been used for dehydration process and possess good selectivity and high permeances. The effects of by-products during dilute acid pretreatment, addition of yeast extract, and ethanol fermentation on PFP membrane performance were investigated. While feeding mixtures of ethanol (90 wt%) in water, to which individual by-products (0.1–2 g/L) were added, the PFP membrane demonstrated no clear change in permeation rate (439–507 g m−2 h−1) or separation factor (14.9–23.5) from 2 to 4 h of the process. The PFP membrane also showed no clear change in permeation rate (751–859 g m−2 h−1) or separation factor (12.5–13.8) while feeding the mixture (final ethanol conc.: 61 wt%) of ethanol and distillation of the fermentation broth using a suspended fraction of dilute acid-pretreated rice straw for 20 h. These results suggest that the PFP membrane can tolerate actual distillation liquids from ethanol fermentation broth obtained from lignocellulosic biomass pretreated with dilute acid.  相似文献   

9.
Membrane bioreactors have been increasingly applied for wastewater treatment during the last two decades. High energy requirements and membrane capital costs remains as their main drawback. A new strategy of operation is presented based on a continuous critical flux determination, preventing excessive cake-layer accumulation on the membrane surface. Reactor operation is divided in cycles of 500 s filtration followed by a short back-flush of 15 s. If cake-layer formation is detected during continuous operation, a decrease in flux or an increase in cross flow velocity is performed. The proposed approach keeps reactor operation oscillating around the critical flux, minimizing reactor maintenance and maximizing performance. An easy to operate statistical steady state determination tool for the trans-membrane pressure was used to detect cake-layer formation. The developed control approach was tested on two Anaerobic MBRs equipped with submerged membranes. Despite the existence of very different critical fluxes and cake-layer formation characteristics, proposed approach was able to keep pressure increase during filtration cycles below 20 mbar. The developed approach is an efficient tool for on-line control of cake-layer formation over the membranes, changing cross flow velocities by manipulating gas sparging in submerged MBRs.  相似文献   

10.
《Small Ruminant Research》2008,74(1-3):103-108
Oxidative damage to sperm resulting from reactive oxygen species generated by the cellular components of semen during liquid storage is possibly one of the main causes for the decline in motility and fertility during storage—the other detrimental cause is low temperature on the destabilisation of sperm membrane structure. The aim of this study was to determine the effects of the addition of the anti-oxidants taurine and glutathione (GSH), and the membrane structure stabiliser, trehalose, on sperm viability during low temperature liquid storage. A total number of 36 ejaculates were collected using the artificial vagina from four Chios rams and nine replicates of the ejaculates were diluted with a Tris-based extender containing additives as the control. The sperm motility, percentage abnormal sperm, plasma membrane intact sperm and the hypo-osmotic swelling test (HOST) were determined during storage of semen at 5 °C for a period of 0, 6, 24 and 30 h of liquid storage, respectively. Trehalose at a level of 50 mM provided the best maintenance of motility at 6 and 30 h (P < 0.05), and gave the highest percentage (69.0 ± 2.0% and 64.6 ± 1.8%, respectively) of viable sperm at 24 and 30 h (P < 0.01). Trehalose treatment at a concentration of 50 mM also resulted in the highest percentage of membrane-intact sperm (53.7 ± 2.9%) after performing HOST at 30 h. The anti-oxidant treatments GSH 5–10 mM and taurine at 50 mM provided a significant improvement in sperm survival during the 6 h of liquid storage at 5 °C (P < 0.05). In conclusion, many aspects of sperm protection, e.g. sperm motility, viability and membrane stabilisation of the sperm cells during relative low temperature storage, are the key factors determining the preservation of sperm function. Future efforts toward improving function of ram sperm kept in low temperature storage should concentrate on anti-oxidant additives. The results of this study provide a new approach to the preservation of sperm from rams of the Chios and related breeds, and so contribute to the improvement of these breeds for the world sheep industry.  相似文献   

11.
The cross talk between different membrane receptors is the source of increasing research. We designed and synthesized a new hetero-bivalent ligand that has antagonist properties on both A1 adenosine and μ opiate receptors with a Ki of 0.8 ± 0.05 and 0.7 ± 0.03 μM, respectively. This hybrid molecule increases cAMP production in cells that over express the μ receptor as well as those over expressing the A1 adenosine receptor and reverses the antalgic effects of μ and A1 adenosine receptor agonists in animals.  相似文献   

12.
《Cryobiology》2014,68(3):383-385
Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24 h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod.  相似文献   

13.
The role of honeybee mandibular gland compounds is poorly understood, although they may act as alarm pheromones. We measured forager and guard bee antennal responses evoked by two major components of mandibular gland secretions of the Asiatic honeybee, Apis cerana. Membrane potentials of antennal sensilla were measured after exposure to three concentrations of the synthetic alarm pheromones 2-heptanone and (Z)-11-eicosen-1-ol using a potentiostat (EA161) connected to an e-corder (ED401) with microelectrodes. The resting membrane potential of A. cerana foragers and guards was ?55.23 ± 1.44 and ?56.41 ± 1.21 mV, respectively. The membrane potential of foragers after exposure to 1.0, 5.0 and 10.0% 2-heptanone was ?5.32 ± 0.46, ?8.41 ± 1.33 and ?11.53 ± 2.16 mV, respectively. The membrane potential of guards was ?5.49 ± 1.66, ?8.46 ± 1.32 and ?7.31 ± 3.46 mV, respectively. Exposure of foragers to 1.0, 5.0 and 10.0% (Z)-11-eicosen-1-ol induced membrane potentials of ?24.00 ± 6.56, ?36.36 ± 5.18 and ?14.60 ± 8.20 mV, respectively; for guards they were ?47.62 ± 1.46, ?46.08 ± 0.87 and ?9.35 ± 1.96 mV, respectively. The highest membrane potential was found in foragers exposed to 1.0% 2-heptanone. The membrane potentials of foragers were higher than that of guards except at the highest concentration (10.0%) of both pheromones. These findings suggest that antennal sensory receptors of foragers may have higher specific thresholds than those of guards.  相似文献   

14.
Caveolae are membrane-budding structures that exist in many vertebrate cells. One of the important functions of caveolae is to form membrane curvature and endocytic vesicles. Recently, it was shown that caveolae-like structures were formed in Escherichia coli through the expression of caveolin-1. This interesting structure seems to be versatile for a variety of biotechnological applications. Targeting of heterologous proteins in the caveolae-like structure should be the first question to be addressed for this purpose. Here we show that membrane proteins co-expressed with caveolin-1 are embedded into the heterologous caveolae (h-caveolae), the cavaolae-like structures formed inside the cell. Two transmembrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, Syntaxin 1a and vesicle-associated membrane protein 2 (VAMP2), were displayed on the h-caveolae surface. The size of the h-caveolae harboring the transmembrane proteins was ∼100 nm in diameter. The proteins were functional and faced outward on the h-caveolae. Multi-spanning transmembrane proteins FtsH and FeoB could be included in the h-caveolae, too. Furthermore, the recombinant E. coli cells were shown to endocytose substrate supplemented in the medium. These results provide a basis for exploiting the h-caveolae formed inside E. coli cells for future biotechnological applications.  相似文献   

15.
Tetanus and botulinum neurotoxins act inside nerve terminals and, therefore, they have to translocate across a membrane to reach their targets. This translocation is driven by a pH gradient, acidic on the cis side and neutral on the cytosol. Recently, a protocol to induce translocation from the plasma membrane was established. Here, we have used this approach to study the temperature dependence and time course of the entry of the L chain of tetanus neurotoxin and of botulinum neurotoxins type C and D across the plasma membrane of cerebellar granular neurons. The time course of translocation of the L chain varies for the three neurotoxins, but it remains in the range of minutes at 37 °C, whilst it takes much longer at 20 °C. BoNT/C does not enter neurons at 20 °C. Translocation also depends on the dimension of the pH gradient. These data are discussed with respect to the contribution of the membrane translocation step to the total time to paralysis and to the low toxicity of these neurotoxins in cold-blood vertebrates.  相似文献   

16.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created the need for better therapeutic options. In this study, five natural xanthones were extracted and purified from the fruit hull of Garcinia mangostana and their antimicrobial properties were investigated. α-Mangostin was identified as the most potent among them against Gram-positive pathogens (MIC = 0.78–1.56 μg/mL) which included two MRSA isolates. α‐Mangostin also exhibited rapid in vitro bactericidal activity (3-log reduction within 5 min). In a multistep (20 passage) resistance selection study using a MRSA isolated from the eye, no resistance against α-mangostin in the strains tested was observed. Biophysical studies using fluorescence probes for membrane potential and permeability, calcein encapsulated large unilamellar vesicles and scanning electron microscopy showed that α‐mangostin rapidly disrupted the integrity of the cytoplasmic membrane leading to loss of intracellular components in a concentration-dependent manner. Molecular dynamic simulations revealed that isoprenyl groups were important to reduce the free energy for the burial of the hydrophobic phenyl ring of α-mangostin into the lipid bilayer of the membrane resulting in membrane breakdown and increased permeability. Thus, we suggest that direct interactions of α-mangostin with the bacterial membrane are responsible for the rapid concentration-dependent membrane disruption and bactericidal action.  相似文献   

17.
The three new dual-layer matrices (polyacrylonitrile (PAN) membranes coated with physically bound chitosan (CHI)—PANCHI-A and chemically bound chitosan—PANCHI-B and PANCHI-C) for immobilization of acetylcholinesterase (AChE) were obtained. The chemical-modified PAN membrane (PAN-NaOH + ethylenediamine (EDA)) was used as a base for the prepared dual-layer membranes. For chemical chitosan bound membrane, chitosan was tethered onto the membrane surface to form a dual-layer biomimetic membrane in the presence of glutaraldehyde (GA). The basic characteristics (amount of amino groups, hydrophilicity and transport characteristics) of the chitosan-modified membranes were investigated. The SEM analyses were shown essential morphology change in the different chitosan membranes.The relative activities and Vmax of the covalently immobilized enzyme on PANCHI-B and PANCHI-C membranes were higher than that on PANCHI-A membrane and chemical-modified membrane with NaOH + EDA. Km values for the different modified membranes are lower for the chitosan-treated membranes. The pH and temperature optimum of immobilized enzyme were determined. The bound enzymes on PANCHI-B and PANCHI-C have higher thermal and storage stability in comparison with AChE on PANCHI-A membrane and free enzyme.  相似文献   

18.
《Bio Systems》2009,95(3):193-201
Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic–hydrophilic (HL–HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be −0.08 ± 0.002 cm−2 (mean ± S.D.) for phospholipid membranes, in 0.155 M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01 M NaCl. The addition of synovial fluid (SF) to the 0.155 M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes.  相似文献   

19.
A nylon membrane based amperometric biosensor employing banana fruit polyphenol oxidase (PPO) is presented for polyphenol detection. Nylon membrane was first activated and then coupled with chitosan. PPO was covalently attached to this membrane through glutaraldehyde coupling. The membrane bioconjugate was characterized by scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) study and then mounted onto Au electrode using parafilm to construct a working electrode. Once assembled along with Ag/AgCl as reference and Pt as auxiliary electrode, the biosensor gave optimum response within 15 s at pH 7.5 and 30 °C, when polarized at +0.4 V. The response (in mA) was directly proportional to polyphenol concentration in the range 0.2–400 μM. The lower detection limit of the biosensor was 0.2 μM. The biosensor was employed for determination of polyphenols in tea, beverages and water samples. The enzyme electrode showed 25% decrease in initial activity after 150 reuses over 6 months, when stored at 4 °C.  相似文献   

20.
《Phytomedicine》2014,21(12):1689-1694
Protozoan diseases, such as leishmaniasis, are a cause of considerable morbidity throughout the world, affecting millions every year. In this study, two triterpenic acids (maslinic and oleanolic acids) were isolated from Tunisian olive leaf extracts and their in vitro activity against the promastigotes stage of Leishmania (L.) infantum and Leishmania (L.) amazonensis was investigated. Maslinic acid showed the highest activity with an IC50 of 9.32 ± 1.654 and 12.460 ± 1.25 μg/ml against L. infantum and L. amazonensis, respectively. The mechanism of action of these drugs was investigated by detecting changes in the phosphatidylserine (PS) exposure, the plasma membrane permeability, the mitochondrial membrane potential and the ATP level production in the treated parasites. By using the fluorescent probe SYTOX® Green, both triterpenic acids showed that they produce a time-dependent plasma membrane permeabilization in the treated Leishmania species. In addition, spectrofluorimeteric data revealed the surface exposure of PS in promastigotes. Both molecules reduced the mitochondrial membrane potential and decreased the ATP levels to 15% in parasites treated with IC90 for 24 h. We conclude that the triterpenic acids tested in this study, show potential as future therapeutic alternative against leishmaniasis. Further studies are needed to confirm this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号