首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR‐induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR‐induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK‐MB, LDH, and cTn‐I). Curcumin also attenuated activities of Caspase‐3, cyclooxygenase‐2, inducible nitric oxide synthase, and levels of nuclear factor kappa‐B, tumor necrosis factor‐α, and interleukin‐1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8‐OHdG and 3,3′‐dityrosine. This study demonstrated that curcumin has a multi‐cardioprotective effect due to its antioxidant, anti‐inflammatory, and antiapoptotic properties.  相似文献   

2.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

3.
Arsenic (As) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Silibinin is a naturally occurring plant bioflavonoid found in the milk thistle of Silybum marianum, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of As toxicity. Since kidney is the critical target organ of chronic As toxicity, we carried out this study to investigate the effects of silibinin on As-induced toxicity in the kidney of rats. In experimental rats, oral administration of sodium arsenite [NaAsO2, 5?mg/(kg?day)] for 4?weeks significantly induced renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (p?<?0.05) decrease in creatinine clearance. As also significantly decreased the levels of urea, uric acid and creatinine in urine. A markedly increased levels of lipid peroxidation markers (thiobarbituric acid reactive substances and lipid hydroperoxides) and protein carbonyl contents with significant (p?<?0.05) decrease in non-enzymatic antioxidants (total sulfhydryl groups, reduced glutathione, vitamin C and vitamin E) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase), Glutathione metabolizing enzymes (glutathione reductase and glutathione-6-phosphate dehydrogenase) and membrane bound ATPases were also observed in As treated rats. Co-administration of silibinin (75?mg/kg?day) along with As resulted in a reversal of As-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological and immunohistochemical studies in the kidney of rats also shows that silibinin (75?mg/kg?day) markedly reduced the toxicity of As and preserved the normal histological architecture of the renal tissue, inhibited the caspase-3 mediated tubular cell apoptosis and decreased the NADPH oxidase, iNOS and NF-κB over expression by As and upregulated the Nrf2 expression in the renal tissue. The present study suggests that the nephroprotective potential of silibinin in As toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in As-induced renal damage.  相似文献   

4.
Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.  相似文献   

5.
To explore the effects of celecoxib on pressure overload‐induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body‐weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib‐induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF‐κB pathway and inhibition of oxidative stress via increases in nuclear factor E2‐related factor‐2‐mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload‐induced CH by reducing apoptosis, inflammation and oxidative stress.  相似文献   

6.
7.
Cisplatin‐induced nephrotoxicity persists as a clinical problem despite several supportive measures to alleviate renal damage. Daidzein (DZ), a dietary isoflavone having antioxidant and anti‐inflammatory activity, is investigated in this study for protective effects against cisplatin‐induced renal injury in rats. DZ (25, 50, or 100 mg/kg; intraperitoneally; 10 days) was administered along with Cisplatin, single dose, on the 7th day of the experiment. On the 11th day, the rats were euthanized, and different samples were collected for analysis. Biochemical, histopathological, and molecular parameters were assessed to evaluate the effect of daidzein. Cisplatin injection resulted in renal dysfunction, lipid peroxidation that led to consumption of antioxidants, exaggerated apoptosis, and inflammation. These changes were associated with increase in the signaling proteins. DZ attenuated the toxic effects of cisplatin on the kidney at 100 mg/kg dose. The study concludes with the finding that daidzein imparts protection against the nephrotoxic effect of Cisplatin and can be considered as a novel, potential therapy.  相似文献   

8.
Excessive plasma triglyceride (TG) and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism and is involved in the regulation of oxidative stress. Although inflammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE−/−) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE−/− mice. ApoE/Plin5 double knockout (ApoE−/−Plin5−/−) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated TG, total cholesterol, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol contents. ApoE−/−Plin5−/− exhibited a higher number of inflammatory monocytes and neutrophils, as well as overexpression of cytokines and chemokines linked with an inflammatory response. Consistently, the IκBα/nuclear factor kappa B pathway was strongly activated in ApoE−/−Plin5−/−. Notably, apoptosis was dramatically induced by ApoE−/−Plin5−/−, as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2. In addition, ApoE−/−Plin5−/− contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinases pathways. In vitro, oxidized low-density lipoprotein (ox-LDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress, and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions.  相似文献   

9.
Excessive exposure to Copper (Cu) may result in Cu toxicity and adversely affect health outcomes. We investigated the protective role of rutin on Cu‐induced brain damage. Experimental rats were treated as follows: group I: control; group II: Cu‐sulfate: 200 mg/kg; group III: Cu‐sulfate, and rutin 100 mg/kg; and group IV: rutin 100 mg/kg, for 7 weeks. Cu only treatment significantly decreased body weight gain, while rutin cotreatment reversed this decrease. Cu treatment increased malondialdehyde, nitric oxide level, and myeloperoxidase activity and decreased superoxide dismutase and catalase activities in rat brain. Immunohistochemistry showed that COX‐2, iNOS, and Bcl‐2 proteins were strongly expressed, while Bax was mildly expressed in the brain of Cu‐treated rats. Furthermore, brain histology revealed degenerated neurons, and perforated laminae of cerebral cortex in the Cu‐only treated rats. Interestingly, coadministration of Cu and rutin reduced the observed histological alteration, improved inflammatory and antioxidant biomarkers, thereby protecting against Cu‐induced brain damage via antioxidative and anti‐inflammatory mechanisms.  相似文献   

10.
Myocarditis is an inflammatory disease of the myocardium. MicroRNA-203 (miR-203) is involved in various physiological and pathological processes. In this work, we aimed to explore the roles and potential mechanisms of miR-203 in myocarditis in vitro. Cardiomyocyte H9c2 was subjected to 10 μg/mL lipopolysaccharide (LPS) for 24 hours. Real-time polymerase chain reaction analysis revealed that LPS upregulated miR-203 expression in H9c2 cells. Cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) assays demonstrated that inhibition of miR-203 reduced cell injury induced by LPS. The cell apoptosis rate, caspase 3 activity, caspase 3/7 activities, and the expression of cleaved-caspase 3 (c-caspase 3) were declined upon miR-203 depletion. In addition, miR-203 silencing attenuated the expression and production of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-6, and IL-8). On the contrary, overexpression of miR-203 showed the opposite trend in cell apoptosis and inflammation. Luciferase reporter assay confirmed that miR-203 could bind with the nuclear factor interleukin-3 (NFIL3) 3′-untranslated regions (3′-UTR), and miR-203 regulated the expression of NFIL3 negatively. Moreover, NFIL3 silencing partly abolished the myocardial protective functions of miR-203 inhibitor. Herein, we suggest that miR-203 promoted cell apoptosis and inflammation induced by LPS via targeting NFIL3.  相似文献   

11.
Cisplatin is one of the most widely used chemotherapeutic anti-cancer drugs that is associated with multiple systemic toxicities limiting its use. The present study aimed to evaluate the hepato-protective effect of hesperidin against cisplatin-induced toxicity. Thirty-two adult male albino rats were equally split into four groups, the first group served as control received normal saline, the second group (CIS) received a single intraperitoneal dose of cisplatin (7.5 mg/kg bw) on the 22nd day of the experiment, the third group (HES) treated once daily with hesperidin (200 mg/kg bw, orally) for 21 days, and the last group (HES + CIS) pretreated once daily with hesperidin followed by a single intraperitoneal dose of cisplatin. Twenty-four hours later, samples were collected for further investigations. CIS-intoxication resulted in a significant decrease in the erythrogram along with thrombocytopenia leukopenia, and lymphopenia. Furthermore, CIS administration significantly elevated serum activity of liver enzymes, total, and indirect bilirubin as well serum glucose, total cholesterol, and triglycerides levels, meanwhile serum total protein, and globulin levels were significantly reduced. The hepatic MDA was markedly elevated with a concomitant decline in the hepatic antioxidant enzymes and severe alterations in the hepatic tissue architecture in CIS-intoxicated rats. Additionally, CIS-induced overexpression of hepatic Bax, caspase-3, and TNF-α, with no effect on hepatic expression of IL-10. Interestingly, HES pretreatment improved the CIS-induced hemato-biochemical, molecular and histopathological alterations. In conclusion, hesperidin hepato-protective effects against CIS might be mediated by its antioxidant, anti-inflammatory, and anti-apoptotic properties.  相似文献   

12.
《Free radical research》2013,47(6):726-739
Abstract

Mefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax. We found that d-serine significantly increased oxidative stress, levels of inflammation- and apoptosis-related molecules in a region specific manner. Mefenamic acid treatment provided significant protection against the elevation of lipid peroxidation, protein oxidation, levels of TNF-α, IL-1β and Bax. As a conclusion, we suggest that d-serine, as a potential neurodegenerative agent, may have a pivotal role in the regulation of oxidative stress, inflammation and apoptosis; and NSAIDs, such as mefenamic acid, may assist other therapeutics in treating disorders where d-serine-induced neurotoxic mechanisms are involved in.  相似文献   

13.
Gefitinib (GEF) is an inhibitor of the epidermal growth factor receptor, linked to higher risk of severe/fatal interstitial lung disease (ILD). This study was performed to determine the protective roles of an angiotensin-II type-1 receptor (AT1R) “valsartan (VAL)” in prevention of lung inflammation, oxidative stress and metabolites alteration induced by GEF. Four groups of male Wistar albino rats were received vehicle, VAL (30 mg/kg), GEF (30 mg/kg), or both for four weeks. Blood samples and lungs were harvested for plasma metabolites and histological analysis, respectively, and evaluation of inflammation and oxidative stress. GEF monotherapy showed a dense inflammation in lungs, and significantly increased tumor necrosis factor-α (P = 0.0349), interleukin-6 (P < 0.0001), chemokine ligand-3 (P = 0.0420), and interleukin-1β (P = 0.0377). GEF increased oxidative stress markers including glutathione, malondialdehyde, and catalase levels. Also, several plasma metabolites including butanoic acid, N-methylphenylethanolamine, oxalic acid, l-alanine, phosphoric acid, l-theorinine, pyroglutamic acid, and 2-bromosebacic acid were changed by GEF. The combination of VAL plus GEF reduced the inflammation and oxidative stress mediated by GEF monotherapy. In addition, the combination treatment returned plasma metabolites to the normal levels compared to GEF monotherapy. These findings revealed that VAL has a possible pulmonary protective role against pulmonary toxicity of GEF, which may lead to novel approaches for management of GEF-induced ILD.  相似文献   

14.
Lung cancer is one of the most common causes of death in the world. Considering the severe side effects, toxicity and high costs of chemotherapeutics used in cancer treatment, there is a need for more economical and natural treatment methods such as essential oils. The purpose of this study is to determine the efficacy of Canarium commune (Elemi) essential oil (EO) and nanoparticles. Elemi EO is analysed by GC-FID/MS. The antiproliferative effect of Elemi EO and prepared nanoparticles on human lung adenocarcinoma (A549) and their effect on normal fibroblast cells (CCD-19Lu) were determined by the MTT test. The levels of TAS, TOS, CYCS, CASP3, TNF-α and IL-6 parameters of the experimental groups were determined using specific ELISA. BAX and Bcl-2 genes were studied with qRT-PCR to investigate the different ways that cancer cells undergo apoptosis. Limonene (53.7%), a-phellandrene (14.5%) and elemol (10.1%) were the major components of Elemi EO. 24-Hour IC50 values in the cells were measured for Elemi EO; A549: 1199 μg/mL, CCD-19Lu: 37.181 μg/mL. TAS and TOS values were found to be higher in cancer cells than in normal cells, and it was found that cancerous cells were dragged into stress and that cancer cells were directed to apoptosis. BAX genes stimulation supported the results. It was determined that Elemi EO and nanoparticles showed anticancer activity without damaging normal cells. Based on these promising results, potential drug candidate Elemi EO loaded nanoparticles may be cell-specific targeted, oral use possible, new generation nanoparticular drugs.  相似文献   

15.
In this study, the hepatoprotective and anti‐fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl4)‐induced liver fibrosis in mice. CCl4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase‐1 expression, antioxidant defenses, and accumulation of 4‐hydroxynonenal and 3‐nitrotyrosine. Furthermore, CCl4 administration evoked profound expression of pro‐inflammatory cytokine expressions such as tumor necrosis factor‐α, monocyte chemoattractant protein‐1, and interleukin‐1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl4‐treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP‐ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl4‐administered animals. However, NTK treatment mitigated CCl4‐induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti‐fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis.  相似文献   

16.
Alpha lipoic acid (ALA) is a powerful antioxidant which has been widely used in the treatment of different system diseases, such as cardiovascular and cerebrovascular diseases. But, there are few studies that refer to protective effects and potential mechanisms on traumatic brain injury (TBI). This study was carried out to investigate the neuroprotective effect following TBI and illuminate the underlying mechanism. Weight drop‐injured model in rats was induced by weight‐drop. ALA was administrated via intraperitoneal injection after TBI. Neurologic scores were examined following several tests. Neurological score was performed to measure behavioural outcomes. Nissl staining and TUNEL were performed to evaluate the neuronal apoptosis. Western blotting was engaged to analyse the protein content of the Nuclear factor erythroid 2‐related factor 2 (Nrf2) and its downstream protein factors, including hemeoxygenase‐1 (HO‐1) and quinine oxidoreductase‐1 (NQO1). ALA treatment alleviated TBI‐induced neuron cell apoptosis and improved neurobehavioural function by up‐regulation of Nrf2 expression and its downstream protein factors after TBI. This study presents new perspective of the mechanisms responsible for the neuronal apoptosis of ALA, with possible involvement of Nrf2 pathway.  相似文献   

17.
《Reproductive biology》2020,20(1):97-105
Green synthesized nanoparticles are more advantageous over conventionally prepared ones due to less toxicity, production cost, and environmental hazards. With the widespread of the utilization of nanoparticles, little is known about the maternal-fetal transplacental transfer of green nanoparticles. We have biosynthesized silver nanoparticles using metabolites of Streptomyces malachitus and sunlight then coated them with chitosan. These nanoparticles have been characterized and intraperitoneally administered at doses of 100 mg/kg on the 6th, 8th, and 10th gestational days. On the 18th day of pregnancy, both coated and non-coted NPs were detected in different maternal tissues, placenta, and in fetuses, as determined by estimation of silver content and observation by electron microscopy. Chitosan coating decreased the silver content in different tissues, maybe due to the larger size of coated nanoparticles that retards the transfer. The toxic effects on maternal and fetal tissues were proportional to their silver content, as determined by the liver and kidney functional analysis of pregnant rats and the ultrastructural and histopathological examination of the maternal liver, placenta and fetal liver. The present data suggest that green silver nanoparticles biosynthesized by Streptomyces malachitus cross the placenta and have toxic effects on maternal tissues, placenta, and fetus. Chitosan coating of these nanoparticles decreases the transfer, and consequently, the toxicity. However, it does not prevent this toxicity.  相似文献   

18.
Endometriosis is a frequent and chronic illness in young women which could be defined by the existence of endometrial stroma and glands outside of the normal site of the lining of the uterus. It has painful symptoms. The advanced stage of endometriosis may lead to gynecological malignancies, such as ovarian cancer, and other complications, including infertility. However, its exact physiopathology is not well known. Recent studies have shown the possible roles of inflammation along with oxidative stress. Additionally, angiogenesis and apoptosis dysregulation contribute to endometriosis pathophysiology. Therapeutic strategies and continuing attempts, to conquer endometriosis should be done regarding molecular signaling pathways. Thus, the present review summarizes current studies and focuses on molecular mechanisms.  相似文献   

19.
The correlation between shape and concentration of silver nanoparticles (AgNPs), their cytotoxicity and formation of reactive oxygen species (ROS) in the presence of electromagnetic fields (EMFs) has been investigated. In addition, the bio-effects caused by the combination of EMFs and graphene nanoparticles (GrNPs) have been also assessed. The AgNPs of three shapes (triangular, spherical and colloidal) and GrNPs were added in high concentrations to the culture of human fibroblasts and exposed to EMF of three different frequencies: 900, 2400 and 7500 MHz. The results demonstrated the dependence of the EMF-induced cytotoxicity on the shape and concentration of AgNPs. The maximal cell killing effect was observed at 900 MHz frequency for NPs of all shapes and concentrations. The highest temperature elevation was observed for GrNPs solution irradiated by EMF of 900 MHz frequency. The exposure to EMF led to significant increase of ROS formation in triangular and colloidal AgNPs solutions. However, no impact of EMF on ROS production was detected for spherical AgNPs. GrNPs demonstrated ROS-protective activity that was dependent on their concentration. Our findings indicate the feasibility to control cytotoxicity of AgNPs by means of EMFs. The effect EMF on the biological activity of AgNPs and GrNPs is reported here for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号