首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.  相似文献   

2.
High-throughput functional protein NMR studies, like protein interactions or dynamics, require an automated approach for the assignment of the protein backbone. With the availability of a growing number of protein 3D structures, a new class of automated approaches, called structure-based assignment, has been developed quite recently. Structure-based approaches use primarily NMR input data that are not based on J-coupling and for which connections between residues are not limited by through bonds magnetization transfer efficiency. We present here a robust structure-based assignment approach using mainly H N H N NOEs networks, as well as 1 H15 N residual dipolar couplings and chemical shifts. The NOEnet complete search algorithm is robust against assignment errors, even for sparse input data. Instead of a unique and partly erroneous assignment solution, an optimal assignment ensemble with an accuracy equal or near to 100% is given by NOEnet. We show that even low precision assignment ensembles give enough information for functional studies, like modeling of protein-complexes. Finally, the combination of NOEnet with a low number of ambiguous J-coupling sequential connectivities yields a high precision assignment ensemble. NOEnet will be available under: .  相似文献   

3.
N-Glycosylation of eukaryotic membrane proteins is a co-translational event that occurs in the lumen of the endoplasmic reticulum (ER). This process is catalyzed by a membrane-associated oligosaccharyl transferase (OST) complex that transfers a preformed oligosaccharide (Glc3Man9GlcNAc2-) to an asparagine (Asn) side-chain acceptor located within the sequon (-Asn-X-Ser/Thr-). Scanning N-glycosylation mutagenesis experiments, where novel acceptor sites are introduced at unique sites within membrane proteins, have shown that the acceptor sites must be located a minimum distance (12–14 amino acids) away from the luminal membrane surface of the ER in order to be efficiently N-glycosylated. Scanning N-glycosylation mutagenesis can therefore be used to determine membrane protein topology and it can also serve as a molecular ruler to define the ends of transmembrane (TM) segments. Furthermore, since N-glycosylation is a co-translational event, N-glycosylation mutagenesis can be used to identify folding intermediates in membrane proteins that may expose segments to the ER lumen transiently during biosynthesis.  相似文献   

4.
NKG2D is an activating receptor expressed on several types of human lymphocytes. NKG2D ligands can be induced upon cell stress and are frequently targeted post-translationally in infected or transformed cells to avoid immune recognition. Virus infection and inflammation alter protein N-glycosylation, and we have previously shown that changes in cellular N-glycosylation are involved in regulation of NKG2D ligand surface expression. The specific mode of regulation through N-glycosylation is, however, unknown. Here we investigated whether direct N-glycosylation of the NKG2D ligand MICA itself is critical for cell surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (Asn8) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N-glycosylation site. Mutational analysis revealed that a single amino acid (Thr24) in the extracellular domain of MICA018 was essential for the N-glycosylation dependence, whereas the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N-glycosylation, and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018, and we pinpoint the residues essential for this N-glycosylation dependence. In addition, we show that this regulatory mechanism of MICA surface expression is likely targeted during different pathological conditions.  相似文献   

5.
The human sodium-dependent vitamin C transporters (hSVCT1 and hSVCT2) mediate cellular uptake of ascorbic acid. Both these transporters contain potential sites for N-glycosylation in their extracellular domains (Asn-138, Asn-144 [hSVCT1]; Asn-188, Asn-196 [hSVCT2]), however the role of N-glycosylation in transporter function is unexplored. On the basis of the result that tunicamycin decreased 14C-ascorbic acid uptake in HepG2 cells, we systematically ablated all consensus N-glycosylation sites in hSVCT1 and hSVCT2 to resolve any effects on ascorbic acid uptake, transporter expression and targeting. We show that removal of individual N-glycosylation sites significantly impairs protein expression and consequently ascorbic acid uptake for hSVCT1 mutants (N138Q is retained intracellularly) and for hSVCT2 mutants (all of which reach the cell surface). N-Glycosylation is therefore essential for vitamin C transporter functionality.  相似文献   

6.
Corin is a membrane-bound protease essential for activating natriuretic peptides and regulating blood pressure. Human corin has 19 predicted N-glycosylation sites in its extracellular domains. It has been shown that N-glycans are required for corin cell surface expression and zymogen activation. It remains unknown, however, how N-glycans at different sites may regulate corin biosynthesis and processing. In this study, we examined corin mutants, in which each of the 19 predicted N-glycosylation sites was mutated individually. By Western analysis of corin proteins in cell lysate and conditioned medium from transfected HEK293 cells and HL-1 cardiomyocytes, we found that N-glycosylation at Asn-80 inhibited corin shedding in the juxtamembrane domain. Similarly, N-glycosylation at Asn-231 protected corin from autocleavage in the frizzled-1 domain. Moreover, N-glycosylation at Asn-697 in the scavenger receptor domain and at Asn-1022 in the protease domain is important for corin cell surface targeting and zymogen activation. We also found that the location of the N-glycosylation site in the protease domain was not critical. N-Glycosylation at Asn-1022 may be switched to different sites to promote corin zymogen activation. Together, our results show that N-glycans at different sites may play distinct roles in regulating the cell membrane targeting, zymogen activation, and ectodomain shedding of corin.  相似文献   

7.
N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin''s accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.  相似文献   

8.
Vitellogenin (Vg) is the precursor of the egg yolk glycoprotein of crustaceans. In the prawn Macrobrachium rosenbergii, Vg is synthesized in the hepatopancreas, secreted to the hemolymph, and taken up by means of receptor-mediated endocytosis into the oocytes. The importance of glycosylation of Vg lies in its putative role in the folding, processing and transport of this protein to the egg yolk and in the fact that the N-glycan moieties could provide a source of carbohydrate during embryogenesis. The present study describes, for the first time, the structure of the glycan moieties and their sites of attachment to the Vg of M. rosenbergii. Bioinformatics analysis revealed seven putative N-glycosylation sites in M. rosenbergii Vg; two of these glycosylation sites are conserved throughout the Vgs of decapod crustaceans from the Pleocyemata suborder (N 159 and N 660). The glycosylation of six putative sites of M. rosenbergii Vg (N 151, N 159, N ,168 N ,614 N 660 and N 2300) was confirmed; three of the confirmed glycosylation sites are localized around the N-terminally conserved N-glycosylation site N 159. From a theoretical three-dimensional structure, these three N-glycosylated sites N 151, N 159, and N 168 were localized on the surface of the Vg consensus sequence. In addition, an uncommon high mannose N-linked oligosaccharide structure with a glucose cap (Glc1Man9GlcNAc2) was characterized in the secreted Vg. These findings thus make a significant contribution to the structural elucidating of the crustacean Vg glycan moieties, which may shed light on their role in protein folding and transport and in recognition between Vg and its target organ, the oocyte.  相似文献   

9.
In a previous study, we determined the structures of the glycans present in ancrod, a thrombin-like serine protease from the venom of the Malayan pit viperAgkistrodon rhodostoma (Pfeifferet al. (1992)Eur J Biochem 205:961–78). In order to allocate the various carbohydrate chains to distinctN-glycosylation sites of the molecule, we have now isolated individual glycopeptides. Peptide moieties were identified after deglycosylation with peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase F by amino acid analysis and sequencing. Liberated oligosaccharides were assigned to the previously deduced carbohydrate structures by high performance liquid chromatography. Although only quantitative differences were observed, the results indicate that each glycosylation site of ancrod carries its characteristic oligosaccharide pattern. Furthermore, all potential sites were shown to be substituted by carbohydrates.Abbreviations HPAE-HPLC high pH anion exchange HPLC - RP-HPLC reversed phase HPLC - PNGase-F peptide-N 4-(N-acetyl--glucosaminyl)asparagine amidase F - PAD pulsed amperometric detection.  相似文献   

10.
Defects in N-glycosylation and N-glycan processing frequently cause alterations in plant cell wall architecture, including changes in the structure of cellulose, which is the most abundant plant polysaccharide. KORRIGAN1 (KOR1) is a glycoprotein enzyme with an essential function during cellulose biosynthesis in Arabidopsis thaliana. KOR1 is a membrane-anchored endo-β1,4-glucanase and contains eight potential N-glycosylation sites in its extracellular domain. Here, we expressed A. thaliana KOR1 as a soluble, enzymatically active protein in insect cells and analyzed its N-glycosylation state. Structural analysis revealed that all eight potential N-glycosylation sites are utilized. Individual elimination of evolutionarily conserved N-glycosylation sites did not abolish proper KOR1 folding, but mutations of Asn-216, Asn-324, Asn-345, and Asn-567 resulted in considerably lower enzymatic activity. In contrast, production of wild-type KOR1 in the presence of the class I α-mannosidase inhibitor kifunensine, which abolished the conversion of KOR1 N-glycans into complex structures, did not affect the activity of the enzyme. To address N-glycosylation site occupancy and N-glycan composition of KOR1 under more natural conditions, we expressed a chimeric KOR1-Fc-GFP fusion protein in leaves of Nicotiana benthamiana. Although Asn-108 and Asn-133 carried oligomannosidic N-linked oligosaccharides, the six other glycosylation sites were modified with complex N-glycans. Interestingly, the partially functional KOR1 G429R mutant encoded by the A. thaliana rsw2-1 allele displayed only oligomannosidic structures when expressed in N. benthamiana, indicating its retention in the endoplasmic reticulum. In summary, our data indicate that utilization of several N-glycosylation sites is important for KOR1 activity, whereas the structure of the attached N-glycans is not critical.  相似文献   

11.
Predicting the structural consequences of site-specific glycosylation remains a major challenge due in part to the lack of convenient experimental tools for rapidly determining how glycosylation influences protein folding. To address this shortcoming, we developed a genetic selection that directly links the in vivo folding of asparagine-linked (N-linked) glycoproteins with antibiotic resistance. Using this assay, we identified three known or putative glycoproteins from Campylobacter jejuni (Peb3, CjaA, and Cj0610c) whose folding was significantly affected by N-glycosylation. We also used the genetic selection to isolate a glycoengineered variant of the Escherichia coli colicin E7 immunity protein (Im7) whose intracellular folding and stability were enhanced as a result of N-glycosylation. In addition to monitoring the effect of glycan attachment on protein folding in living cells, this strategy could easily be extended for optimizing protein folding in vivo and engineering glycosylation enzymes, pathways, and hosts for optimal performance. See accompanying commentary by Danielle Tullman-Ercek DOI: 10.1002/biot.201300319  相似文献   

12.
Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.  相似文献   

13.
The effect of N-glycosylation on the assembly of N-methyl-D-aspartate (NMDA) heteromeric cloned receptors was studied. Thus human embryonic kidney (HEK) 293 cells were cotransfected with N-methyl-D-aspartate R1 (NR1) and N-methyl-d-aspartate R2A (NR2A) clones and the cells grown post-transfection in the presence of tunicamycin (TM). TM treatment resulted in a decrease of the NR1 subunit with Mr 117 000 with a concomitant increase in a Mr 97 000 immunoreactive species previously identified as the non-N-glycosylated NR1 subunit. In parallel, TM caused a dose-dependent inhibition of [3H]MK801 binding to the expressed receptor which was a result of an approximate four-told reduction in the Dissociation Constant (KD) but with no change in the number of binding sites (BMAX)-NMDA receptor cell surface expression was unchanged following TM treatment but it did result in a decrease in the percentage cell death post-transfection compared to control samples. The removal of TM from the cell culture media resulted in a return to the control KD value for [3H]MK801 binding and partial reglycosylation of newly synthesized NR1 subunit. These results demonstrate that N-glycosylation is requisite for the efficient expression of functional NR1/NR2A receptors. Furthermore, they suggest that N-glycosylation may be important for the correct formation of the channel domain of the NR1/NR2A receptor.  相似文献   

14.
The extracellular loop 3 (EL-3) of SLC4 Na+-coupled transporters contains 4 highly conserved cysteines and multiple N-glycosylation consensus sites. In the electrogenic Na+-HCO3 cotransporter NBCe1-A, EL-3 is the largest extracellular loop and is predicted to consist of 82 amino acids. To determine the structural-functional importance of the conserved cysteines and the N-glycosylation sites in NBCe1-A EL-3, we analyzed the potential interplay between EL-3 disulfide bonding and N-glycosylation and their roles in EL-3 topological folding. Our results demonstrate that the 4 highly conserved cysteines form two intramolecular disulfide bonds, Cys583-Cys585 and Cys617-Cys642, respectively, that constrain EL-3 in a folded conformation. The formation of the second disulfide bond is spontaneous and unaffected by the N-glycosylation state of EL-3 or the first disulfide bond, whereas formation of the first disulfide bond relies on the presence of the second disulfide bond and is affected by N-glycosylation. Importantly, EL-3 from each monomer is adjacently located at the NBCe1-A dimeric interface. When the two disulfide bonds are missing, EL-3 adopts an extended conformation highly accessible to protease digestion. This unique adjacent parallel location of two symmetrically folded EL-3 loops from each monomer resembles a domain-like structure that is potentially important for NBCe1-A function in vivo. Moreover, the formation of this unique structure is critically dependent on the finely tuned interplay between disulfide bonding and N-glycosylation in the membrane processed NBCe1-A dimer.  相似文献   

15.
Cell-surface expression of the discoidin domain receptor (DDR) tyrosine kinase family in high molecular mass form was controlled sensitively by the glucose concentration through a post-translational N-glycosylation process. Cycloheximide time-course experiments revealed that the high-molecular-mass forms of DDR1 and DDR2 were significantly less stable than control receptor tyrosine kinases. Site-directed mutational analysis of the consensus N-glycosylation sites of the DDRs revealed that mutations of asparagine 213 of DDR2 and asparagine 211 of DDR1, a conserved N-glycosylation site among vertebrate DDRs, inhibited the generation of the high-molecular-mass isoform. Taken together, these results suggest a mechanism to control the activity of the DDR family by regulating its cell-surface expression. Due to low stability, the steady-state population of functional DDR proteins in the cell surface depends sensitively on its maturation process via post-translational N-glycosylation, which is controlled by the glucose supply and the presence of a conserved N-glycosylation site.  相似文献   

16.
The protein N-glycosylation in plants   总被引:5,自引:0,他引:5  
In plants, most of the extracellular compartment and the endomembrane system are glycosylated by N-linked oligosaccharides. The N-glycosylation of proteins has a great impact both on their physicochemical properties and on their biological functions. Over the last ten years, a number of laboratories have contributed considerably to the structure, the biosynthesis and the function of plant N-linked glycans. In this review, data on this domain will be summarized and the recent results on the N-glycosylation of a vacuolar lectin, the bean phytohaemagglutinin (PHA) will also be included. This PHA, used as a model glycoprotein, was expressed in different plant systems and the N-glycosylation patterns of different recombinant PHA were compared. In addition to this study on plant-specific glycosylation, the same model glycoprotein was used to investigate whether or not N-glycosylation and N-glycan maturation is organ-specific in plants.Keywords: N-linked oligosaccharide, biosynthesis and function, phytohaemagglutinin.   相似文献   

17.
N-Glycosylation is a common form of protein post-translational modification in Pichia pastoris and greatly affects folding and secretion. The propeptide of the Pseudomonas aeruginosa elastase (PAE) is indispensable for proper folding and secretion of the enzyme. We have studied the effect of introducing N-glycosylation sites to the propeptide of the recombinant elastase (rPAE) on its expression levels in P. pastoris. Addition of N-glycosylation sites to the propeptide at N51 or N93 enhanced rPAE production levels by 104 or 57 %, respectively, while addition at N11 or N127 led to a 25 or 50 % decrease, respectively. The introduced N-glycosylation sites in the propeptide at these four sites exerted a null effect on the N-glycosylation degree of mature rPAE.  相似文献   

18.
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.  相似文献   

19.
Neuronal Kv3 voltage-gated K+ channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1–S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K+ currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.  相似文献   

20.
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective ‘unlabeling’ or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly 13C/15N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {12CO i 15N i+1}-filtered HSQC, which aids in linking the 1HN/15N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i − 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to 2H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of 14N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号