首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundPrevious research demonstrated that a high dose of phlorizin-rich apple extract (AE) can markedly inhibit early-phase postprandial glycemia, but efficacy of lower doses of the AE is unclear.ObjectiveTo determine whether lower AE doses reduce early-phase postprandial glycemia in healthy adults and investigate mechanisms.DesignIn a randomized, controlled, double-blinded, cross-over acute trial, drinks containing 1.8 g (HIGH), 1.35 g (MED), 0.9 g (LOW), or 0 g (CON) of a phlorizin-rich AE were consumed before 75 g starch/sucrose meal. Postprandial blood glucose, insulin, C-peptide, glucose-dependent insulinotropic polypeptide (GIP) and polyphenol metabolites concentrations were measured 0–240 min, acetaminophen concentrations to assess gastric emptying rate, and 24 h urinary glucose excretion. Effects of AE on intestinal glucose transport were investigated in Caco-2/TC7 cells.ResultsAE significantly reduced plasma glucose iAUC 0–30 min at all doses: mean differences (95% CI) relative to CON were −15.6 (−23.3, −7.9), −11.3 (−19.6, −3.0) and −8.99 (−17.3, −0.7) mmol/L per minute for HIGH, MEDIUM and LOW respectively, delayed Tmax (HIGH, MEDIUM and LOW 45 min vs. CON 30 min), but did not lower Cmax. Similar dose-dependent treatment effects were observed for insulin, C-peptide, and GIP. Gastric emptying rates and urinary glucose excretion did not differ. Serum phloretin, quercetin and epicatechin metabolites were detected postprandially. A HIGH physiological AE dose equivalent decreased total glucose uptake by 48% in Caco-2/TC7 cells.ConclusionsPhlorizin-rich AE, even at a low dose, can slightly delay early-phase glycemia without affecting peak and total glycemic response.  相似文献   

2.
Blackcurrants are rich in polyphenolic glycosides called anthocyanins, which may inhibit postprandial glycemia. The aim was to determine the dose-dependent effects of blackcurrant extract on postprandial glycemia. Men and postmenopausal women (14 M, 9 W, mean age 46 years, S.D.=14) were enrolled into a randomized, double-blind, crossover trial. Low sugar fruit drinks containing blackcurrant extract providing 150-mg (L-BE), 300-mg (M-BE) and 600-mg (H-BE) total anthocyanins or no blackcurrant extract (CON) were administered immediately before a high-carbohydrate meal. Plasma glucose, insulin and incretins (GIP and GLP-1) were measured 0–120 min, and plasma 8-isoprostane F, together with arterial stiffness by digital volume pulse (DVP) was measured at 0 and 120 min. Early plasma glucose response was significantly reduced following H-BE (n=22), relative to CON, with a mean difference (95% CI) in area over baseline (AOB) 0-30 min of −0.34 mmol/l.h (−0.56, −0.11, P<.005); there were no differences between the intermediate doses and placebo. Plasma insulin concentrations (AOB 0–30 min) were similarly reduced. Plasma GIP concentrations (AOB 0–120 min) were significantly reduced following H-BE, with a mean difference of −46.6 ng/l.h (−66.7, −26.5, P<.0001) compared to CON. Plasma GLP-1 concentrations were reduced following H-BE at 90 min. There were no effects on 8-isoprostane F or vascular function. Consumption of blackcurrant extract in amounts roughly equivalent to 100-g blackcurrants reduced postprandial glycemia, insulinemia and incretin secretion, which suggests that inclusion of blackcurrant polyphenols in foods may provide cardio-metabolic health benefits. This trial was registered at clinicaltrials.gov as NCT01706653.  相似文献   

3.
We and others have shown that apple polyphenols decrease adipose tissue mass. To better understand the underlying mechanisms and to expand clinical applicability, we herein examine whether apple polyphenols induce adipose thermogenic adaptations (browning) and prevent diet-induced obesity and related insulin resistance. In mice fed a standard diet, daily apple polyphenol consumption induced thermogenic adaptations in inguinal white adipose tissue (iWAT), based on increases in the expression of brown/beige adipocyte selective genes (Ucp1, Cidea, Tbx1, Cd137) and protein content of uncoupling protein 1 and mitochondrial oxidative phosphorylation enzymes. Among the upstream regulatory factors of browning, fibroblast growth factor 21 (FGF21) and peroxisome proliferator-activated receptor gamma coactivator 1 α (PGC-1α) levels were concomitantly up-regulated by apple polyphenols. In the primary cell culture experiment, the results did not support a direct action of apple polyphenols on beige adipogenesis. Instead, apple polyphenols increased tyrosine hydroxylase (a rate-limiting enzyme of catecholamine synthesis) in iWAT, which activates the adipocyte thermogenic program possibly via intratissue cellular communications. In high-fat fed mice, apple polyphenols induced beige adipocyte development in iWAT, reduced fat accumulation, and increased glucose disposal rates in the glucose and insulin tolerance tests. Taken together, dietary administration of apple polyphenols induced beige adipocyte development in iWAT possibly via activation/induction of the peripheral catecholamine synthesis–FGF21–PGC-1α cascade. Results from diet-induced obese mice indicate that apple polyphenols have therapeutic potential for obesity and related metabolic disorders.  相似文献   

4.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are both incretin hormones regulating postprandial insulin secretion. Their relative importance in this respect under normal physiological conditions is unclear, however, and the aim of the present investigation was to evaluate this. Eight healthy male volunteers (mean age: 23 (range 20-25) years; mean body mass index: 22.2 (range 19.3-25.4) kg/m2) participated in studies involving stepwise glucose clamping at fasting plasma glucose levels and at 6 and 7 mmol/l. Physiological amounts of either GIP (1.5 pmol/kg/min), GLP-1(7-36)amide (0.33 pmol/kg/min) or saline were infused for three periods of 30 min at each glucose level, with 1 h "washout" between the infusions. On a separate day, a standard meal test (566 kcal) was performed. During the meal test, peak insulin concentrations were observed after 30 min and amounted to 223+/-27 pmol/l. Glucose+saline infusions induced only minor increases in insulin concentrations. GLP-1 and GIP infusions induced significant and similar increases at fasting glucose levels and at 6 mmol/l. At 7 mmol/l, further increases were seen, with GLP-1 effects exceeding those of GIP. Insulin concentrations at the end of the three infusion periods (60, 150 and 240 min) during the GIP clamp amounted to 53+/-5, 79+/-8 and 113+/-15 pmol/l, respectively. Corresponding results were 47+/-7, 95+/-10 and 171+/-21 pmol/l, respectively, during the GLP-1 clamp. C-peptide responses were similar. Total and intact incretin hormone concentrations during the clamp studies were higher compared to the meal test, but within physiological limits. Glucose infusion alone significantly inhibited glucagon secretion, which was further inhibited by GLP-1 but not by GIP infusion. We conclude that during normal physiological plasma glucose levels, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide contribute nearly equally to the incretin effect in humans, because their differences in concentration and potency outweigh each other.  相似文献   

6.
《Endocrine practice》2015,21(2):143-157
ObjectiveSelf-adjustment of insulin dose is commonly practiced in Western patients with type 2 diabetes but is usually not performed in Asian patients. This multinational, 24-week, randomized study compared patient-led with physician-led titration of once-daily insulin glargine in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering agents.MethodsPatient-led (n = 275) or physician-led (n = 277) subjects followed the same dose-titration algorithm guided by self-monitored fasting blood glucose (FBG; target, 110 mg/dL [6.1 mmol/L]). The primary endpoint was change in mean glycated hemoglobin (HbA1c) at week 24 in the patient-led versus physician-led titration groups.ResultsPatient-led titration resulted in a significantly higher drop in HbA1c value at 24 weeks when compared with physician-led titration (− 1.40% vs. − 1.25%; mean difference, − 0.15; 95% confidence interval, − 0.29 to 0.00; P = .043). Mean decrease in FBG was greatest in the patient-led group (− 2.85 mmol/L vs. − 2.48 mmol/L; P = .001). The improvements in HbA1c and FBG were consistent across countries, with similar improvements in treatment satisfaction in both groups. Mean daily insulin dose was higher in the patient-led group (28.9 units vs. 22.2 units; P < .001). Target HbA1c of < 7.0% without severe hypoglycemia was achieved in 40.0% and 32.9% in the patient-led and physician-led groups, respectively (P = .086). Severe hypoglycemia was not different in the 2 groups (0.7%), with an increase in nocturnal and symptomatic hypoglycemia in the patient-led arm.ConclusionPatient-led insulin glargine titration achieved near-target blood glucose levels in Asian patients with uncontrolled type 2 diabetes who were on 2 oral glucose-lowering drugs, demonstrating that Asian patients can self-uptitrate insulin dose effectively when guided. (Endocr Pract. 2015;21:143-157)  相似文献   

7.
8.
Improved glucose tolerance following a sequential meal is known as the second-meal phenomenon. We aimed to investigate its extent and underlying mechanisms in patients with type 2 diabetes. Metabolic responses after lunch in 12 diabetic patients were compared on two separate days: one with (Day BL) and another without (Day FL) breakfast. The responses of hormones were calculated by the incremental area under the curve (iAUC) values for 180 min after each meal. Indexes of early-phase insulin secretion were assessed, and β-cell function was estimated by mathematical modeling. [iAUC(glucose(180-360 min))] was significantly lower on Day BL than on Day FL (181 ± 43 vs. 472 ± 29 mmol·liter(-1)·min, P = 0.0005). The magnitude of the The second-meal phenomenon [iAUC(glucose(180-360 min)) on Day BL/Day FL] was 35 ± 9%. The peak levels of insulin and C-peptide were attained 45 min earlier after the second meal than after the first meal. iAUC(glucose(180-360 min)) correlated negatively with iAUC(insulin(180-210 min)) (r = -0.443, P = 0.0300), insulinogenic index (r = -0.769, P < 0.0001), acute C-peptide response (r = -0.596, P = 0.0021), and potentiation factor [i.e., potentiation effect on insulin secretion] ratio (180-360)/(0-20) (r = -0.559, P = 0.0045), while correlated positively with free fatty acid level before lunch (r = 0.679, P = 0.0003). The second-meal phenomenon was evident in patients with type 2 diabetes. Potentiation of the early-phase insulin response by a prior meal contributes to this phenomenon in type 2 diabetes.  相似文献   

9.
GIP metabolite [GIP (3-42)] and GLP-1 metabolite [GLP-1 (9-36) amide] have been reported to differ with regard to biological actions. Systemic DPP-4 inhibition can therefore reveal different actions of GIP and GLP-1. In catheter wearing Wistar rats, insulinotropic effects of equipotent doses of GIP (2.0 nmol/kg) and GLP-1 (7-36) amide (4.0 nmol/kg) and vehicle were tested in the absence/presence of DPP-4 inhibition. Blood glucose and insulin were frequently sampled. DPP-4 inhibitor was given at -20 min, the incretin at -5 min and the intravenous glucose tolerance test (0.4 g glucose/kg) commenced at 0 min. G-AUC and I-AUC, insulinogenic index and glucose efflux, were calculated from glucose and insulin curves. Systemic DPP-4 inhibition potentiated the acute GIP incretin effects: I-AUC (115±34 vs. 153±39 ng·min/ml), increased the insulinogenic index (0.74±0.24 vs. 0.99±0.26 ng/mmol), and improved glucose efflux (19.8±3.1 vs. 20.5±5.0 min?1). The GLP-1 incretin effects were diminished: I-AUC (124±18 vs. 106±38 ng·min/ml), the insulinogenic index was decreased (0.70±0.18 vs. 0.50±0.19 ng/mmol), and glucose efflux declined (14.9±3.1 vs. 11.1±3.7 min?1). GLP-1 and GIP differ remarkably in their glucoregulatory actions in healthy rats when DPP-4 is inhibited. These previously unrecognized actions of DPP-4 inhibitors could have implications for future use in humans.  相似文献   

10.
The purpose of this study was to characterize the effects of glucose-dependent insulinotropic peptide (GIP) on small intestinal glucose transport in vitro. Stripped proximal jejunum from fasted mice was mounted in Ussing chambers. The serosal side was bathed in Regular Ringer solution containing 5 mmol/l glucose, and the mucosal side, with solution containing 10 mmol/l 3-O-methyl glucose (3OMG). Intercellular cyclic adenosine monophosphate (cAMP), mucosa-to-serosa fluxes of 3OMG (J(ms)(3OMG)), and short-circuit current (I(SC)) were measured in the presence and absence of GIP. GIP increased cAMP by 2.5-fold in isolated enterocytes, consistent with a direct effect of GIP on these epithelial cells. GIP also increased I(SC) and J(ms)(3OMG) by 68 and 53%, respectively, indicating that the increase in J(ms)(3OMG) was primarily electrogenic, with a small electroneutral component. The stimulatory effect of GIP on J(ms)(3OMG) was concentration dependent. In addition, 1,000 nmol/l and 10 nmol/l GIP increased J(ms)(3OMG) by 70 and 30% over control, respectively, consistent with receptor activation. Phlorizin (20 mumol/l), an inhibitor of Na(+)-glucose cotransporter (SGLT-1), abolished the increase in I(SC) and decreased J(ms)(3OMG) by approximately 65%. These results indicate that stimulation of SGLT-1 activity by GIP partially accounts for the increase in J(ms)(30MG). These studies are the first to demonstrate direct stimulation of intestinal glucose transport by GIP independent of its insulinotropic properties. GIP stimulates cellular accumulation of cAMP and thereby upregulates glucose transport. The GIP-induced increase in glucose transport appears to be mediated, at least in part, by SGLT-1.  相似文献   

11.
Postprandial secretion of insulin and glucose-dependent insulinotropic polypeptide (GIP) is differentially regulated by not only dietary carbohydrate but also fat. Recent studies have shown that the ingestion of diacylglycerol (DAG) results in lower postprandial insulin and GIP release than that of triacylglycerol (TAG), suggesting a possible mechanism for the antiobesity effect of DAG. The structural and metabolic characteristics of DAG are believed to be responsible for its beneficial effects. This study was designed to clarify the effect of 1-monoacylglycerol [oleic acid-rich (1-MO)], the characteristic metabolite of DAG, on postprandial insulin and GIP secretion, and the underlying mechanism. Dietary 1-MO dose dependently stimulated whole body fat utilization, and reduced high-fat diet-induced body weight gain and visceral fat accumulation in mice, both of which are consistent with the physiological effect of dietary DAG. Although glucose-stimulated insulin and GIP release was augmented by the addition of fat, coingestion of 1-MO reduced the postprandial hormone release in a dose-dependent manner. Either glucose or fatty acid transport into the everted intestinal sacs and enteroendocrine HuTu-80 cells was also reduced by the addition of 1-MO. Reduction of either glucose or fatty acid transport or the nutrient-stimulated GIP release by 1-MO was nullified when the intestine was pretreated with sodium-glucose cotransporter-1 (SGLT-1) or fatty acid translocase (FAT)/CD36 inhibitor. We conclude that dietary 1-MO attenuates postprandial GIP and insulin secretion by reducing the intestinal transport of the GIP secretagogues, which may be mediated via SGLT-1 and FAT/CD36. Reduced secretion of these anabolic hormones by 1-MO may be related to the antiobesity effect of DAG.  相似文献   

12.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

13.
A partial differential Progressive Tubular Reabsorption (PTR) model, describing renal tubular glucose reabsorption and urinary glucose excretion following a glucose load perturbation, is proposed and fitted to experimental data from five subjects. For each subject the Glomerular Filtration Rate was estimated and both blood and urine glucose were sampled following an Intra-Venous glucose bolus. The PTR model was compared with a model representing the conventional Renal Threshold Hypothesis (RTH). A delay bladder compartment was introduced in both formulations. For the RTH model, the average threshold for glycosuria varied between 9.90±4.50 mmol/L and 10.63±3.64 mmol/L (mean ± Standard Deviation) under different hypotheses; the corresponding average maximal transport rates varied between 0.48±0.45 mmol/min (86.29±81.22 mg/min) and 0.50±0.42 mmol/min (90.62±76.15 mg/min). For the PTR Model, the average maximal transports rates varied between 0.61±0.52 mmol/min (109.57±93.77 mg/min) and 0.83±0.95 mmol/min (150.13±171.85 mg/min). The time spent by glucose inside the tubules before entering the bladder compartment varied between 1.66±0.73 min and 2.45±1.01 min.The PTR model proved much better than RTH at fitting observations, by correctly reproducing the delay of variations of glycosuria with respect to the driving glycemia, and by predicting non-zero urinary glucose elimination at low glycemias. This model is useful when studying both transients and steady-state glucose elimination as well as in assessing drug-related changes in renal glucose excretion.  相似文献   

14.
Genetic parameters were estimated for cold carcase weight (CCW), carcase conformation (CON), carcase fat class (FAT), age at slaughter (AGE) and average daily carcase gain (ADCG) in 14 common UK breeds of cattle. These included crossbred animals but purebred datasets were also analysed for the most populous sire-breeds. Heritability estimates for beef breeds that were significant ranged from 0.24 to 0.44, 0.12 to 0.35, 0.12 to 0.36, 0.15 to 0.38 and 0.26 to 0.43 for CCW, CON, FAT, AGE and ADCG, respectively. For Holstein-Friesian, a dairy breed, heritability estimates were consistently lower than most beef breeds with estimates of 0.12, 0.13, 0.13, 0.06 and 0.15 for CCW, CON, FAT, AGE and ADCG, respectively. In all breed groups, genetic correlations were positive between CCW, CON and ADCG. In general, genetic correlations were moderate between CCW and CON (0.13 to 0.77), moderate to strong between CCW and ADCG (0.57 to 0.98) and weak or moderate between CON and ADCG (0.12 to 0.82). Genetic correlations for FAT with CCW (−  0.20 to −  0.42) and CON (−  0.16 to −  0.52) tended to be negative in the beef breed but were positive in the dairy breed, although not significant between CCW and FAT. For most beef breeds genetic correlations between AGE and carcase traits were not significant with the exceptions of AGE and CCW for Simmental (−  0.15) and Salers (−  0.24), AGE and CON for Limousin (0.15) and Simmental (0.14) and AGE and FAT from three sire-breeds (−  0.17 to −  0.35). However, the correlation between AGE and ADCG was negative and moderate to strong in magnitude (−  0.23 to −  0.67) in all beef breeds as expected since faster-growing animals reach slaughter age earlier. For Holstein-Friesian, all genetic correlations with AGE were negative and moderate to strong. Genetic correlations indicate that selection for increased carcase weight should simultaneously increase growth rate and improve conformation in all breeds and reduce carcase fatness in the majority of beef breeds. The results indicate that there is genetic variation in all five traits suitable for undertaking genetic improvement of carcase traits and age at slaughter; however, there are apparent breed differences. The use of abattoir-derived phenotypes for undertaking genetic improvement is an example where the supply chain can work together to share information to enable the cattle industry to move forward.  相似文献   

15.
Cardiovascular diseases (CVD) are the leading global cause of death. Strategies to reduce CVD risk are urgently needed. Polyphenols represent a class of bioactive compounds with potential to moderate biochemical risk factors for CVD (cholesterol, triglycerides, glucose, and inflammation). This double-blind, placebo-controlled, randomized parallel-groups trial investigated the effect of a polyphenol-rich seaweed (Fucus vesiculosus) extract on biochemical markers of CVD risk. Thirty-four overweight and obese adults (21 female, 13 male) with elevated low-density lipoprotein cholesterol (>2.0 mmol/L) were randomized to either the seaweed extract (2000 mg/d) or placebo for twelve weeks. Fasting blood samples were collected at baseline, week six and week twelve to assess biochemical markers. Tests of cognitive performance and mood were performed at baseline, week six and week twelve. A 9.5% (-2.3, 12.9) increase in high-density lipoprotein (HDL) cholesterol was identified following the seaweed extract (baseline: mean (SD) 1.28 (0.23) mmol/L, week 12: 1.35 (0.24) mmol/L) which was different to placebo (baseline: 1.38 (0.54) mmol/L, week 12: 1.35 (0.59) mmol/L) (P=.045). No changes were identified in low-density lipoprotein cholesterol, total cholesterol, triglycerides, glucose, insulin, interleukin (IL)-2, IL-6, IL-8, IL-10, or tumour necrosis factor-alpha levels in the blood, or in cognitive performance or mood between the treatment and placebo groups. Despite the small increase observed in HDL cholesterol, the polyphenol-rich seaweed extract did not change CVD risk factors in adults with high fasting lipids. A larger sample size would be required to confirm the clinical relevance of the changes in HDL cholesterol.  相似文献   

16.
《Endocrine practice》2014,20(2):129-138
ObjectiveThere are varied reports on the effect of vitamin D supplementation on β-cell function and plasma glucose levels. The objective of this study was to examine the effect of vitamin D and calcium supplementation on β-cell function and plasma glucose levels in subjects with vitamin D deficiency.MethodsNondiabetic subjects (N = 48) were screened for their serum 25-hydroxyvitamin D (25-OHD), albumin, creatinine, calcium, phosphorus, alkaline phosphatase, and intact parathyroid hormone (PTH) status. Subjects with 25-OHD deficiency underwent a 2-hour oral glucose tolerance test. Cholecalciferol (9,570 international units [IU]/day; tolerable upper intake level, 10,000 IU/day; according to the Endocrine Society guidelines for vitamin D supplementation) and calcium (1 g/day) were supplemented.ResultsThirty-seven patients with 25-OHD deficiency participated in the study. The baseline and postvitamin D/calcium supplementation and the difference (corrected) were: serum calcium, 9 ± 0.33 and 8.33 ± 1.09 mg/dL (− 0.66 ± 1.11 mg/dL); 25-OHD, 8.75 ± 4.75 and 36.83 ± 18.68 ng/mL (28.00 ± 18.33 ng/mL); PTH, 57.9 ± 29.3 and 36.33 ± 22.48 pg/mL (− 20.25 ± 22.45 pg/mL); fasting plasma glucose, 78.23 ± 7.60 and 73.47 ± 9.82 mg/dL (− 4.88 ± 10.65 mg/dL); and homeostasis model assessment-2–percent β-cell function C-peptide secretion (HOMA-2–%B C-PEP), 183.17 ± 88.74 and 194.67 ± 54.71 (11.38 ± 94.27). Significant differences were observed between baseline and post-vitamin D/calcium supplementation serum levels of corrected calcium (Z, − 3.751; P < .0001), 25-OHD (Z, − 4.9; P < .0001), intact PTH (Z, − 4.04; P < .0001), fasting plasma glucose (Z, − 2.7; P < .007), and HOMA-2–%B C-PEP (Z, − 1.923; P < .05) as determined by Wilcoxon signed rank test. Insulin resistance as measured by HOMA was unchanged.ConclusionOptimizing serum 25-OHD concentrations and supplementation with calcium improves fasting plasma glucose levels and β-cell secretory reserve. Larger randomized control studies are needed to determine if correction of 25-OHD deficiency will improve insulin secretion and prevent abnormalities of glucose homeostasis. (Endocr Pract. 2014;20:129-138)  相似文献   

17.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

18.
The incretin hormone, glucose-dependent insulinotropic polypeptide (GIP, previously known as gastric inhibitory polypeptide), is rapidly degraded to the biologically inactive metabolite GIP (3-42) in the circulation, but little is known about the kinetics of the intact hormone and the metabolite and whether differences exist between patients with type 2 diabetes mellitus and healthy subjects. We examined eight type 2 diabetic patients (six men, two women); mean (range) age: 59 (48-69) years; BMI: 31.6 (26.0-37.7) kg/m2; HbA1C: 9.0 (8.2-13.2) %; fasting plasma glucose (FPG): 10.0 (8.3-13.2) mmol/l and 8 healthy subjects matched for age, gender and BMI. An intravenous bolus injection of GIP (7.5 nmol) was given and venous blood samples were drawn the following 45 minutes. Peak concentrations of total GIP (intact+metabolite, mean+/-SEM) and intact GIP (in brackets) were 920+/-91 (442+/-52) pmol/l in the type 2 diabetic patients and 775+/-68 (424+/-30) pmol/l in the healthy subjects (NS). GIP was eliminated rapidly with the clearance rate for intact GIP being 2.3+/-0.2 l/min in the type 2 diabetic patients and 2.4+/-0.2 l/min in the healthy subjects (NS). The volumes of distributions were similar in the two groups and ranged from 8 to 21 l per subject. The primary metabolite, GIP 3-42, generated through the action of dipeptidyl peptidase IV (DPP-IV), was eliminated with a mean half-life of 17.5 and 20.5 min in patients and healthy subjects (NS). CONCLUSION: Elimination of GIP is similar in obese type 2 diabetic patients and matched healthy subjects. Differences in elimination of GIP and its primary metabolite, therefore, do not seem to contribute to the defective insulinotropic effect of GIP in type 2 diabetes.  相似文献   

19.
We have studied glucose phosphorylation at increasing glucose concentrations (1, 5, 10, 25, 50, and 100 mmol/liter) in capillaries of the choroidocapillary lamina from the eye of normal female albino rabbits (n = 10; body wt 1800-2000 g; mean ± SEM morning glycemia: 147.77 ± 4.02 mg/dl) and from the eye of spontaneously hyperglycemic rabbits (n = 5, body wt 1800-2000 g. mean ± SEM morning glycemia; 211.00 ± 10.76 mg/dl). In the 3000g supernatant of capillary homogenates, the glucose phosphorylating activity (NADP reduction measured as optical density change at 366 nm at pH 7.5) increased progressively with the rise of glucose concentration (r = 0.36; P < 0.05), approaching the peak at high glucose level (25 mmol/liter), with values ranging from 5.32 ± 0.46 (SEM) nmol/min/mg protein to 7.14 ± 0.74 (+34.21%, P < 0.01). When measured at a more alkaline pH (8.2) the glucose phosphorylation was higher than at pH 7.5 and retained the responsiveness to increasing glucose concentrations. These kinetic characteristics differ from those seen in most tissues and are somewhat reminiscent of those shown by hepatic glucokinase. Indeed, by subtracting the activity at 1 mmol/liter glucose from that at higher glucose concentrations, we calculated the "glucokinase component" which together with the "hexokinase component" form the total glucose phosphorylating activity. Glucose phosphorylation in capillaries from spontaneously hyperglycemic rabbits was lower than normal (values: 3.66 ± 0.31 vs 5.32 ± (1.46 of the normal rabbits; −31.20%; P < 0.05). This could contribute to the hyperglycemia by reducing glucose utilization. However, in these animals the enzyme activity retained the responsivity to increasing glucose concentrations (r = 0.41, P < 0.05). Therefore, the actual capillary glucose phosphorylation in these animals would depend upon both the enzyme level (which is reduced) and the glucose concentration (which is increased). Due to the in vivo inhibition of the hexokinase component, the glucokinase component may be predominant in vivo, making the stimulating effects of hyperglycemia much more pronounced than it would appear from our data in vitro. This may lead to glucose overutilization. These kinetic characteristics of glucose phosphorylation in capillaries might be relevant to the mechanisms leading to diabetic microangiopathy.  相似文献   

20.
To examine the effect of attenuated epinephrine and elevated insulin on intramuscular hormone sensitivity lipase activity (HSLa) during exercise, seven men performed 120 min of semirecumbent cycling (60% peak pulmonary oxygen uptake) on two occasions while ingesting either 250 ml of a 6.4% carbohydrate (GLU) or sweet placebo (CON) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analyzed for HSLa. Blood samples were simultaneously obtained from a brachial artery and a femoral vein before and during exercise, and leg blood flow was measured by thermodilution in the femoral vein. Net leg glycerol and lactate release and net leg glucose and free fatty acid (FFA) uptake were calculated from these measures. Insulin and epinephrine were also measured in arterial blood before and throughout exercise. During GLU, insulin was elevated (120 min: CON, 11.4 +/- 2.4, GLU, 35.3 +/- 6.9 pM, P < 0.05) and epinephrine suppressed (120 min: CON, 6.1 +/- 2.5, GLU, 2.1 +/- 0.9 nM; P < 0.05) compared with CON. Carbohydrate feeding also resulted in suppressed (P < 0.05) HSLa relative to CON (120 min: CON, 1.71 +/- 0.18, GLU, 1.27 +/- 0.16 mmol.min-1.kg dry mass-1). There were no differences in leg lactate or glycerol release when trials were compared, but leg FFA uptake was lower (120 min: CON, 0.29 +/- 0.06, GLU, 0.82 +/- 0.09 mmol/min) and leg glucose uptake higher (120 min: CON, 3.16 +/- 0.59, GLU, 1.37 +/- 0.37 mmol/min) in GLU compared with CON. These results demonstrate that circulating insulin and epinephrine play a role in HSLa in contracting skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号