首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustered interval-censored failure time data occur when the failure times of interest are clustered into small groups and known only to lie in certain intervals. A number of methods have been proposed for regression analysis of clustered failure time data, but most of them apply only to clustered right-censored data. In this paper, a sieve estimation procedure is proposed for fitting a Cox frailty model to clustered interval-censored failure time data. In particular, a two-step algorithm for parameter estimation is developed and the asymptotic properties of the resulting sieve maximum likelihood estimators are established. The finite sample properties of the proposed estimators are investigated through a simulation study and the method is illustrated by the data arising from a lymphatic filariasis study.  相似文献   

2.
The restricted mean survival time (RMST) evaluates the expectation of survival time truncated by a prespecified time point, because the mean survival time in the presence of censoring is typically not estimable. The frequentist inference procedure for RMST has been widely advocated for comparison of two survival curves, while research from the Bayesian perspective is rather limited. For the RMST of both right- and interval-censored data, we propose Bayesian nonparametric estimation and inference procedures. By assigning a mixture of Dirichlet processes (MDP) prior to the distribution function, we can estimate the posterior distribution of RMST. We also explore another Bayesian nonparametric approach using the Dirichlet process mixture model and make comparisons with the frequentist nonparametric method. Simulation studies demonstrate that the Bayesian nonparametric RMST under diffuse MDP priors leads to robust estimation and under informative priors it can incorporate prior knowledge into the nonparametric estimator. Analysis of real trial examples demonstrates the flexibility and interpretability of the Bayesian nonparametric RMST for both right- and interval-censored data.  相似文献   

3.
The accelerated failure time regression model is most commonly used with right-censored survival data. This report studies the use of a Weibull-based accelerated failure time regression model when left- and interval-censored data are also observed. Two alternative methods of analysis are considered. First, the maximum likelihood estimates (MLEs) for the observed censoring pattern are computed. These are compared with estimates where midpoints are substituted for left- and interval-censored data (midpoint estimator, or MDE). Simulation studies indicate that for relatively large samples there are many instances when the MLE is superior to the MDE. For samples where the hazard rate is flat or nearly so, or where the percentage of interval-censored data is small, the MDE is adequate. An example using Framingham Heart Study data is discussed.  相似文献   

4.
In this paper, we consider incomplete survival data: partly interval-censored failure time data where observed data include both exact and interval-censored observations on the survival time of interest. We present a class of generalized log-rank tests for this type of survival data and establish their asymptotic properties. The method is evaluated using simulation studies and illustrated by a set of real data from a diabetes study.  相似文献   

5.
Jiang H  Fine JP  Chappell R 《Biometrics》2005,61(2):567-575
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Because mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left-truncated and right-censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. First, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed-form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.  相似文献   

6.
This article considers three nonparametric estimators of the joint distribution function for a survival time and a continuous mark variable when the survival time is interval censored and the mark variable may be missing for interval-censored observations. Finite and large sample properties are described for the nonparametric maximum likelihood estimator (NPMLE) as well as estimators based on midpoint imputation (MIDMLE) and coarsening the mark variable (CMLE). The estimators are compared using data from a simulation study and a recent phase III HIV vaccine efficacy trial where the survival time is the time from enrollment to infection and the mark variable is the genetic distance from the infecting HIV sequence to the HIV sequence in the vaccine. Theoretical and empirical evidence are presented indicating the NPMLE and MIDMLE are inconsistent. Conversely, the CMLE is shown to be consistent in general and thus is preferred.  相似文献   

7.
Pan W 《Biometrics》2000,56(1):199-203
We propose a general semiparametric method based on multiple imputation for Cox regression with interval-censored data. The method consists of iterating the following two steps. First, from finite-interval-censored (but not right-censored) data, exact failure times are imputed using Tanner and Wei's poor man's or asymptotic normal data augmentation scheme based on the current estimates of the regression coefficient and the baseline survival curve. Second, a standard statistical procedure for right-censored data, such as the Cox partial likelihood method, is applied to imputed data to update the estimates. Through simulation, we demonstrate that the resulting estimate of the regression coefficient and its associated standard error provide a promising alternative to the nonparametric maximum likelihood estimate. Our proposal is easily implemented by taking advantage of existing computer programs for right-censored data.  相似文献   

8.
Zhang J  Heitjan DF 《Biometrics》2006,62(4):1260-1268
Right- and interval-censored data are common special cases of coarsened data (Heitjan and Rubin, 1991, Annals of Statistics19, 2244-2253). As with missing data, standard statistical methods that ignore the random nature of the coarsening mechanism may lead to incorrect inferences. We extend a simple sensitivity analysis tool, the index of local sensitivity to nonignorability (Troxel, Ma, and Heitjan, 2004, Statistica Sinica14, 1221-1237), to the evaluation of nonignorability of the coarsening process in the general coarse-data model. By converting this index into a simple graphical display one can easily assess the sensitivity of key inferences to nonignorable coarsening. We illustrate the validity of the method with a simulated example, and apply it to right-censored data from an observational study of cardiac transplantation and to interval-censored data on time to detectable viral load from a clinical trial in HIV disease.  相似文献   

9.
For multicenter randomized trials or multilevel observational studies, the Cox regression model has long been the primary approach to study the effects of covariates on time-to-event outcomes. A critical assumption of the Cox model is the proportionality of the hazard functions for modeled covariates, violations of which can result in ambiguous interpretations of the hazard ratio estimates. To address this issue, the restricted mean survival time (RMST), defined as the mean survival time up to a fixed time in a target population, has been recommended as a model-free target parameter. In this article, we generalize the RMST regression model to clustered data by directly modeling the RMST as a continuous function of restriction times with covariates while properly accounting for within-cluster correlations to achieve valid inference. The proposed method estimates regression coefficients via weighted generalized estimating equations, coupled with a cluster-robust sandwich variance estimator to achieve asymptotically valid inference with a sufficient number of clusters. In small-sample scenarios where a limited number of clusters are available, however, the proposed sandwich variance estimator can exhibit negative bias in capturing the variability of regression coefficient estimates. To overcome this limitation, we further propose and examine bias-corrected sandwich variance estimators to reduce the negative bias of the cluster-robust sandwich variance estimator. We study the finite-sample operating characteristics of proposed methods through simulations and reanalyze two multicenter randomized trials.  相似文献   

10.
Lu Mao 《Biometrics》2023,79(1):61-72
The restricted mean time in favor (RMT-IF) of treatment is a nonparametric effect size for complex life history data. It is defined as the net average time the treated spend in a more favorable state than the untreated over a prespecified time window. It generalizes the familiar restricted mean survival time (RMST) from the two-state life–death model to account for intermediate stages in disease progression. The overall estimand can be additively decomposed into stage-wise effects, with the standard RMST as a component. Alternate expressions of the overall and stage-wise estimands as integrals of the marginal survival functions for a sequence of landmark transitioning events allow them to be easily estimated by plug-in Kaplan–Meier estimators. The dynamic profile of the estimated treatment effects as a function of follow-up time can be visualized using a multilayer, cone-shaped “bouquet plot.” Simulation studies under realistic settings show that the RMT-IF meaningfully and accurately quantifies the treatment effect and outperforms traditional tests on time to the first event in statistical efficiency thanks to its fuller utilization of patient data. The new methods are illustrated on a colon cancer trial with relapse and death as outcomes and a cardiovascular trial with recurrent hospitalizations and death as outcomes. The R-package rmt implements the proposed methodology and is publicly available from the Comprehensive R Archive Network (CRAN).  相似文献   

11.
FRYDMAN  HALINA 《Biometrika》1995,82(4):773-789
The nonparametric estimation of the cumulative transition intensityfunctions in a threestate time-nonhomogeneous Markov processwith irreversible transitions, an ‘illness-death’model, is considered when times of the intermediate transition,e.g. onset of a disease, are interval-censored. The times of‘death’ are assumed to be known exactly or to beright-censored. In addition the observed process may be left-truncated.Data of this type arise when the process is sampled periodically.For example, when the patients are monitored through periodicexaminations the observations on times of change in their diseasestatus will be interval-censored. Under the sampling schemeconsidered here the Nelson–Aalen estimator (Aalen, 1978)for a cumulative transition intensity is not applicable. Inthe proposed method the maximum likelihood estimators of someof the transition intensities are derived from the estimatorsof the corresponding subdistribution functions. The maximumlikelihood estimators are shown to have a self-consistency property.The self-consistency algorithm is developed for the computationof the estimators. This approach generalises the results fromTurnbull (1976) and Frydman (1992). The methods are illustratedwith diabetes survival data.  相似文献   

12.
Ning J  Qin J  Shen Y 《Biometrics》2011,67(4):1369-1378
We present a natural generalization of the Buckley-James-type estimator for traditional survival data to right-censored length-biased data under the accelerated failure time (AFT) model. Length-biased data are often encountered in prevalent cohort studies and cancer screening trials. Informative right censoring induced by length-biased sampling creates additional challenges in modeling the effects of risk factors on the unbiased failure times for the target population. In this article, we evaluate covariate effects on the failure times of the target population under the AFT model given the observed length-biased data. We construct a Buckley-James-type estimating equation, develop an iterative computing algorithm, and establish the asymptotic properties of the estimators. We assess the finite-sample properties of the proposed estimators against the estimators obtained from the existing methods. Data from a prevalent cohort study of patients with dementia are used to illustrate the proposed methodology.  相似文献   

13.
S G Self  E A Grossman 《Biometrics》1986,42(3):521-530
Linear rank statistics are described for testing for differences between groups when the data are interval-censored. The statistics are closely related to those described by Prentice (1978, Biometrika 65, 167-179) for right-censored data. Problems in calculating the statistics are discussed and several approaches to computation including estimation of the efficient rank scores are described. Results from a small simulation study are presented. The methods are applied to data from a study relating tissue levels of PCBs to occupational exposure.  相似文献   

14.
Goetghebeur E  Ryan L 《Biometrics》2000,56(4):1139-1144
We propose a semiparametric approach to the proportional hazards regression analysis of interval-censored data. An EM algorithm based on an approximate likelihood leads to an M-step that involves maximizing a standard Cox partial likelihood to estimate regression coefficients and then using the Breslow estimator for the unknown baseline hazards. The E-step takes a particularly simple form because all incomplete data appear as linear terms in the complete-data log likelihood. The algorithm of Turnbull (1976, Journal of the Royal Statistical Society, Series B 38, 290-295) is used to determine times at which the hazard can take positive mass. We found multiple imputation to yield an easily computed variance estimate that appears to be more reliable than asymptotic methods with small to moderately sized data sets. In the right-censored survival setting, the approach reduces to the standard Cox proportional hazards analysis, while the algorithm reduces to the one suggested by Clayton and Cuzick (1985, Applied Statistics 34, 148-156). The method is illustrated on data from the breast cancer cosmetics trial, previously analyzed by Finkelstein (1986, Biometrics 42, 845-854) and several subsequent authors.  相似文献   

15.
Survival estimation using splines   总被引:1,自引:0,他引:1  
A nonparametric maximum likelihood procedure is given for estimating the survivor function from right-censored data. It approximates the hazard rate by a simple function such as a spline, with different approximations yielding different estimators. A special case is that proposed by Nelson (1969, Journal of Quality Technology 1, 27-52) and Altshuler (1970, Mathematical Biosciences 6, 1-11). The estimators are uniformly consistent and have the same asymptotic weak convergence properties as the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) estimator. However, in small and in heavily censored samples, the simplest spline estimators have uniformly smaller mean squared error than do the Kaplan-Meier and Nelson-Altshuler estimators. The procedure is extended to estimate the baseline hazard rate and regression coefficients in the Cox (1972, Journal of the Royal Statistical Society, Series B 34, 187-220) proportional hazards model and is illustrated using experimental carcinogenesis data.  相似文献   

16.
Hazard regression for interval-censored data with penalized spline   总被引:1,自引:0,他引:1  
Cai T  Betensky RA 《Biometrics》2003,59(3):570-579
This article introduces a new approach for estimating the hazard function for possibly interval- and right-censored survival data. We weakly parameterize the log-hazard function with a piecewise-linear spline and provide a smoothed estimate of the hazard function by maximizing the penalized likelihood through a mixed model-based approach. We also provide a method to estimate the amount of smoothing from the data. We illustrate our approach with two well-known interval-censored data sets. Extensive numerical studies are conducted to evaluate the efficacy of the new procedure.  相似文献   

17.
Variance estimators are derived for estimators of the average lead time and average benefit time due to screening in a randomized screening trial via influence functions. The influence functions demonstrate that these estimators are asymptotically equivalent to the mean difference, between the study and control case groups, in the appropriate survival times. For estimating benefit time, the survival time is measured since start of study; for estimating lead time, the survival time is measured since time of diagnosis. Asymptotic variances of these estimators can be calculated in a straightforward manner from the influence functions, and these variances can be estimated from actual trial data. The performance of the variance estimators is assessed via a simulated screening trial. The situation involving censored data is also discussed.  相似文献   

18.
Datta S  Satten GA 《Biometrics》2002,58(4):792-802
We propose nonparametric estimators of the stage occupation probabilities and transition hazards for a multistage system that is not necessarily Markovian, using data that are subject to dependent right censoring. We assume that the hazard of being censored at a given instant depends on a possibly time-dependent covariate process as opposed to assuming a fixed censoring hazard (independent censoring). The estimator of the integrated transition hazard matrix has a Nelson-Aalen form where each of the counting processes counting the number of transitions between states and the risk sets for leaving each stage have an IPCW (inverse probability of censoring weighted) form. We estimate these weights using Aalen's linear hazard model. Finally, the stage occupation probabilities are obtained from the estimated integrated transition hazard matrix via product integration. Consistency of these estimators under the general paradigm of non-Markov models is established and asymptotic variance formulas are provided. Simulation results show satisfactory performance of these estimators. An analysis of data on graft-versus-host disease for bone marrow transplant patients is used as an illustration.  相似文献   

19.
This paper discusses multivariate interval-censored failure time data that occur when there exist several correlated survival times of interest and only interval-censored data are available for each survival time. Such data occur in many fields. One is tumorigenicity experiments, which usually concern different types of tumors, tumors occurring in different locations of animals, or together. For regression analysis of such data, we develop a marginal inference approach using the additive hazards model and apply it to a set of bivariate interval-censored data arising from a tumorigenicity experiment. Simulation studies are conducted for the evaluation of the presented approach and suggest that the approach performs well for practical situations.  相似文献   

20.
Ng MP 《Biometrics》2002,58(2):439-442
Peto (1973, Applied Statistics, 22, 86-91) gave a nonparametric generalized maximum-likelihood estimate of the survival function for interval-censored data. His method has a tendency to concentrate probability masses at the endpoints of the intervals, even for the ordinary grouped data, instead of spreading them through the intervals, as one might expect them to be in the underlying distribution. We describe a modification that overcomes this. The new estimate reduces to the standard binomial estimate when applied to grouped data. It also reduces to the Kaplan-Meier estimate when applied to survival data that consist of only exact or right-censored observations. Both estimates are maximum-likelihood estimates but are based on different interpretations of the endpoints of the intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号