首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is considerable support for the concept that insulin-mediated increases in microvascular blood flow to muscle impact significantly on muscle glucose uptake. Since the microvascular blood flow increases with insulin have been shown to be nitric oxide-dependent inhibition of cGMP-degrading phosphodiesterases (cGMP PDEs) is predicted to enhance insulin-mediated increases in microvascular perfusion and muscle glucose uptake. Therefore, we studied the effects of the pan-cGMP PDE inhibitor zaprinast on the metabolic and vascular actions of insulin in muscle. Hyperinsulinemic euglycemic clamps (3 mU·min(-1)·kg(-1)) were performed in anesthetized rats and changes in microvascular blood flow assessed from rates of 1-methylxanthine metabolism across the muscle bed by capillary xanthine oxidase in response to insulin and zaprinast. We also characterized cGMP PDE isoform expression in muscle by real-time PCR and immunostaining of frozen muscle sections. Zaprinast enhanced insulin-mediated microvascular perfusion by 29% and muscle glucose uptake by 89%, while whole body glucose infusion rate during insulin infusion was increased by 33% at 2 h. PDE2, -9, and -10 were the major isoforms expressed at the mRNA level in muscle, while PDE1B, -9A, -10A, and -11A proteins were expressed in blood vessels. Acute administration of the cGMP PDE inhibitor zaprinast enhances muscle microvascular blood flow and glucose uptake response to insulin. The expression of a number of cGMP PDE isoforms in skeletal muscle suggests that targeting specific cGMP PDE isoforms may provide a promising avenue for development of a novel class of therapeutics for enhancing muscle insulin sensitivity.  相似文献   

2.
Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, may augment metabolic and vascular actions of insulin. Therefore, we investigated effects of EGCG treatment to simultaneously improve cardiovascular and metabolic function in spontaneously hypertensive rats (SHR; model of metabolic syndrome with hypertension, insulin resistance, and overweight). In acute studies, EGCG (1-100 microM) elicited dose-dependent vasodilation in mesenteric vascular beds (MVB) isolated from SHR ex vivo that was inhibitable by N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide synthase antagonist) or wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor]. In chronic studies, 9-wk-old SHR were treated by gavage for 3 wk with EGCG (200 mg.kg(-1).day(-1)), enalapril (30 mg.kg(-1).day(-1)), or vehicle. A separate group of SHR receiving L-NAME (80 mg/l in drinking water) was treated for 3 wk with either EGCG or vehicle. Vasodilator actions of insulin were significantly improved in MVB from EGCG- or enalapril-treated SHR (when compared with vehicle-treated SHR). Both EGCG and enalapril therapy significantly lowered systolic blood pressure (SBP) in SHR. EGCG therapy of SHR significantly reduced infarct size and improved cardiac function in Langendorff-perfused hearts exposed to ischemia-reperfusion (I/R) injury. In SHR given L-NAME, beneficial effects of EGCG on SBP and I/R were not observed. Both enalapril and EGCG treatment of SHR improved insulin sensitivity and raised plasma adiponectin levels. We conclude that acute actions of EGCG to stimulate production of nitric oxide from endothelium using PI 3-kinase-dependent pathways may explain, in part, beneficial effects of EGCG therapy to simultaneously improve metabolic and cardiovascular pathophysiology in SHR. These findings may be relevant to understanding potential benefits of green tea consumption in patients with the metabolic syndrome.  相似文献   

3.
Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 microm) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by l-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H(2)O(2) (assessed with H(2)O(2)-specific fluorescent dye CM-H(2)DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption.  相似文献   

4.
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5′-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1−/−). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1−/− islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states.  相似文献   

5.
Increased glucose transporter (GLUT4) protein expression in hyperthyroidism   总被引:2,自引:0,他引:2  
We have studied skeletal muscle glucose uptake by perfused hindquarter preparations from rats treated with thyroxine. Basal glucose uptake (in the absence of insulin) was approximately 2 fold higher in muscle of hyperthyroid rats compared to controls. Insulin (10(-7) M) stimulated glucose uptake 4.0 and 6.8 fold in the 10 day and 30 day controls rats, respectively. Maximal glucose uptake (10(-7) M insulin) was not different in control and hyperthyroid rats and thus insulin responsiveness in the hyperthyroid animals was reduced to 2.5 fold stimulation. The abundance of the insulin-sensitive glucose transporter protein (muscle/fat, GLUT-4), measured by Western blot analysis using polyclonal antisera, was higher in skeletal muscle from both groups of hyperthyroid rats. These studies indicate that thyroid hormones increase basal glucose uptake in skeletal muscle and this is due, at least in part, to an increment of GLUT-4 isoform. Increased expression of muscle glucose transporter proteins may be responsible for the increased peripheral glucose utilization seen in hyperthyroidism.  相似文献   

6.
The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell cultures suggest that the hemodynamic effects of insulin emanate from the vasculature itself and involve nitric oxide-dependent vasodilation at large and small vessels with the purpose of increasing access for insulin and nutrients to the interstitium and muscle cells. Recently developed techniques for detecting changes in microvascular flow, specifically capillary recruitment in muscle, indicate this to be a key site for early insulin action at physiological levels in rats and humans. In the absence of increases in bulk flow to muscle, insulin may act to switch flow from nonnutritive to the nutritive route. In addition, there is accumulating evidence to suggest that insulin resistance of muscle in vivo in terms of impaired glucose uptake could be partly due to impaired insulin-mediated capillary recruitment. Exercise training improves insulin-mediated capillary recruitment and glucose uptake by muscle.  相似文献   

7.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

8.
9.
Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (P<0.05). Under the same conditions lactate incorporation into glycogen was reduced (P<0.05) in insulin-treated muscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (P<0.05). When muscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel.  相似文献   

10.
This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.  相似文献   

11.
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.  相似文献   

12.
We examined the effects of inhibiting nitric oxide synthase with Nomega-nitro-l-arginine-methyl ester (l-NAME) on total hindlimb blood flow, muscle microvascular recruitment, and hindlimb glucose uptake during euglycemic hyperinsulinemia in vivo in the rat. We used two independent methods to measure microvascular perfusion. In one group of animals, microvascular recruitment was measured using the metabolism of exogenously infused 1-methylxanthine (1-MX), and in a second group contrast-enhanced ultrasound (CEU) was used. Limb glucose uptake was measured by arterial-venous concentration differences after 2 h of insulin infusion. Saline alone did not alter femoral artery flow, glucose uptake, or 1-MX metabolism. Insulin (10 mU.min-1.kg-1) significantly increased hindlimb total blood flow (0.69 +/- 0.02 to 1.22 +/- 0.11 ml/min, P < 0.05), glucose uptake (0.27 +/- 0.05 to 0.95 +/- 0.08 micromol/min, P < 0.05), 1-MX uptake (5.0 +/- 0.5 to 8.5 +/- 1.0 nmol/min, P < 0.05), and skeletal muscle microvascular volume measured by CEU (10.0 +/- 1.6 to 15.0 +/- 1.2 video intensity units, P < 0.05). Addition of l-NAME to insulin completely blocked the effect of insulin on both total limb flow and microvascular recruitment (measured using either 1-MX or CEU) and blunted glucose uptake by 40% (P < 0.05). We conclude that insulin specifically recruits flow to the microvasculture in skeletal muscle via a nitric oxide-dependent pathway and that this may be important to insulin's overall action to regulate glucose disposal.  相似文献   

13.
Skeletal muscle is insulin resistant in the obese Zucker rat. Endurance training reduces muscle insulin resistance, but the effects of a single acute exercise session on muscle insulin resistance in the obese Zucker rat are unknown. Therefore, insulin responsiveness of muscle glucose uptake was measured in 15-week-old obese rats either 1, 48, or 72 hours after two hours of intermittent exercise (3030 min; work:rest). Hindlimbs of sedentary lean (LS) and obese (OS) rats and exercised obese (OE) rats were perfused after a 10-hour fast under both basal (0 mU.ml?1) and maximal (20 mU.ml?1) insulin concentrations to measure net glucose uptake. Insulin responsiveness of net glucose uptake was significantly reduced in OS compared to LS (8.5 ± 1.6 vs 15.3 ± 2.0 μmol.g?1.h?1, respectively). Compared to OS, insulin responsiveness of net glucose uptake was significantly increased by 56% and 80% at 1 hour and 48 hours after acute exercise. However, 72 hours after acute exercise, the increased insulin responsiveness of net glucose uptake was no longer evident. These results indicate that improved responsiveness of muscle glucose uptake persists for at least 48 hours after two hours of acute intermittent exercise in 15-week-old obese Zucker rats. (OBESITY RESEARCH 1993; 1:295–302)  相似文献   

14.
In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.  相似文献   

15.
By immunohistochemistry, we demonstrated the localization of the Na(+)-D-glucose cotransporter SGLT1 in capillaries of rat heart and skeletal muscle, but not in capillaries of small intestine and submandibular gland. mRNA of SGLT1 was identified in skeletal muscle and primary cultured coronary endothelial cells. The functional relevance of SGLT1 for glucose transport across capillary walls in muscle was tested by measuring the extraction of D-glucose from the perfusate during non-recirculating perfusion of isolated rat hindlimbs. In this model, D-glucose extraction from the perfusate is increased by insulin which accelerates D-glucose uptake into myocytes by increasing the concentration of glucose transporter GLUT4 in the plasma membrane. The insulin-induced increase of D-glucose extraction from the perfusate was abolished after blocking SGLT1 with the specific inhibitor phlorizin. The data show that SGLT1 in capillaries of skeletal muscle is required for the action of insulin on D-glucose supply of myocytes.  相似文献   

16.
1. The effect of insulin (0.5, 10 and 50 munits/ml of perfusate) on glucose uptake and disposal in skeletal muscle was studied in the isolated perfused hindquarter of obese (fa/fa) and lean (Fa/Fa) Zucker rats and Osborne-Mendel rats. 2. A concentration of 0.5 munit of insulin/ml induced a significant increase in glucose uptake (approx. 2.5 mumol/min per 30 g of muscle) in lean Zucker rats and in Osborne-Mendel rats, and 10 munits of insulin/ml caused a further increase to approx. 6 mumol/min per 30 g of muscle; but 50 munits of insulin/ml had no additional stimulatory effect. In contrast, in obese Zucker rats only 10 and 50 munits of insulin/ml had a stimulatory effect on glucose uptake, the magnitude of which was decreased by 50-70% when compared with either lean control group. Since under no experimental condition tested was an accumulation of free glucose in muscle-cell water observed, the data suggest an impairment of insulin-stimulated glucose transport across the muscle-cell membrane in obese Zucker rats. 3. The intracellular disposal of glucose in skeletal muscle of obese Zucker rats was also insulin-insensitive: even at insulin concentrations that clearly stimulated glucose uptake, no effect of insulin on lactate oxidation (nor an inhibitory effect on alanine release) was observed; [14C]glucose incorporation into skeletal-muscle lipids was stimulated by 50 munits of insulin/ml, but the rate was still only 10% of that observed in lean Zucker rats. 4. The data indicate that the skeletal muscle of obese Zucker rats is insulin-resistant with respect to both glucose-transport mechanisms and intracellular pathways of glucose metabolism, such as lactate oxidation. The excessive degree of insulin-insensitivity in skeletal muscle of obese Zucker rats may represent a causal factor in the development of the glucose intolerance in this species.  相似文献   

17.
Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This study's objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) after sedation with ketamine and during maintenance anesthesia with isoflurane. Thirteen normal-activity (NA) and six activity-restricted (AR) primates underwent contrast-enhanced ultrasound to determine skeletal muscle capillary blood volume (CBV) during an intravenous glucose tolerance test (IVGTT) and during contractile exercise. NO bioactivity was assessed by flow-mediated vasodilation. Although there were no differences in weight, basal glucose, basal insulin, or truncal fat, AR primates were insulin resistant compared with NA primates during an IVGTT (2,225 ± 734 vs. 5,171 ± 3,431 μg·ml(-1)·min(-1), P < 0.05). Peak CBV was lower in AR compared with NA primates during IVGTT (0.06 ± 0.01 vs. 0.12 ± 0.02 ml/g, P < 0.01) and exercise (0.10 ± 0.02 vs. 0.20 ± 0.02 ml/g, P < 0.01), resulting in a lower peak skeletal muscle blood flow in both circumstances. The insulin-mediated changes in CBV correlated inversely with the degree of IR and directly with activity. Flow-mediated dilation was lower in the AR primates (4.6 ± 1.0 vs. 9.8 ± 2.3%, P = 0.01). Thus, activity restriction produces impaired skeletal muscle capillary recruitment during a carbohydrate challenge and contributes to IR in the absence of obesity. Reduced NO bioactivity may be a pathological link between inactivity and impaired capillary function.  相似文献   

18.
Epidemiological data have suggested that drinking green tea is negatively associated with diabetes, and adipose oxidative stress may have a central role in causing insulin resistance, according to recent findings. The aim of this work is to elucidate a new mechanism for green tea's anti-insulin resistance effect. We used obese KK-ay mice, high-fat diet-induced obese rats, and induced insulin resistant 3T3-L1 adipocytes as models. Insulin sensitivity and adipose reactive oxidative species (ROS) levels were detected in animals and adipocytes. The oxidative stress assay and glucose uptake ability assay were performed, and the effects of EGCG on insulin signals were detected. Green tea catechins (GTCs) significantly decreased glucose levels and increased glucose tolerance in animals. GTCs reduced ROS content in both models of animal and adipocytes. EGCG attenuated dexamethasone and TNF-α promoted ROS generation and increased glucose uptake ability. EGCG also decreased JNK phosphorylation and promoted GLUT-4 translocation. EGCG and GTCs could improve adipose insulin resistance, and exact this effect on their ROS scavenging functions.  相似文献   

19.
Insulin has an exercise-like action to increase microvascular perfusion of skeletal muscle and thereby enhance delivery of hormone and nutrient to the myocytes. With insulin resistance, insulin's action to increase microvascular perfusion is markedly impaired. This review examines the present status of these observations and techniques available to measure such changes as well as the possible underpinning mechanisms. Low physiological doses of insulin and light exercise have been shown to increase microvascular perfusion without increasing bulk blood flow. In these circumstances, blood flow is proposed to be redirected from the nonnutritive route to the nutritive route with flow becoming dominant in the nonnutritive route when insulin resistance has developed. Increased vasomotion controlled by vascular smooth muscle may be part of the explanation by which insulin mediates an increase in microvascular perfusion, as seen from the effects of insulin on both muscle and skin microvascular blood flow. In addition, vascular dysfunction appears to be an early development in the onset of insulin resistance, with the consequence that impaired glucose delivery, more so than insulin delivery, accounts for the diminished glucose uptake by insulin-resistant muscle. Regular exercise may prevent and ameliorate insulin resistance by increasing "vascular fitness" and thereby recovering insulin-mediated capillary recruitment.  相似文献   

20.
This study was designed to examine insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats after conditions of simulated microgravity. To simulate microgravity, male Sprague-Dawley rats were suspended in a head-down (45 degrees) position with their hindlimbs non-weight bearing (SUS) for 14 days. In addition, rats were assigned to suspension followed by exercise (SUS-E), to cage control (CC), or to exercising control (CC-E) groups. Exercise consisted of five 10-min bouts of treadmill running at the same relative intensity for the CC-E and SUS-E rats (80-90% of maximum O2 consumption). Hindlimb perfusion results indicated that glucose uptake for the entire hindquarter at 24,000 microU/ml insulin (maximum stimulation) was significantly higher in the SUS (8.9 +/- 0.5 mumol.g-1.h-1) than in the CC (7.6 +/- 0.4 mumol.g-1.h-1) rats, signifying an increased insulin responsiveness. Glucose uptake at 90 microU/ml insulin was also significantly higher in the SUS (48 +/- 4; % of maximum stimulation over basal) than in the CC (21 +/- 4%) rats. In addition, exercise-induced increases in glucose uptake for the hindlimbs (133%) and glucose incorporation into glycogen for the plantaris (8.4-fold), extensor digitorum longus (5.4-fold), and white gastrocnemius (4.8-fold) muscles were greater for the SUS-E rats than for the CC-E rats (39% and 1.9-, 1.9-, and 3.0-fold, respectively). Therefore, suspension of the rat with hindlimbs non-weight bearing leads to enhanced muscle responses to insulin and exercise when they were applied separately. However, insulin action appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号