首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Faecal contamination is one of the major factors affecting biological water quality. In this study, we investigated microbial taxonomic diversity of faecally polluted lotic ecosystems in Norway. These ecosystems comprise tributaries of drinking water reservoirs with moderate and high faecal contamination levels, an urban creek exposed to extremely high faecal pollution and a rural creek that was the least faecally polluted. The faecal water contamination had both anthropogenic and zoogenic origins identified through quantitative microbial source tracking applying host-specific Bacteroidales 16S rRNA genetic markers. The microbial community composition revealed that Proteobacteria and Bacteroidetes (70–90% relative abundance) were the most dominant bacterial phyla, followed by Firmicutes, especially in waters exposed to anthropogenic faecal contamination. The core archaeal community consisted of Parvarchaeota (mainly in the tributaries of drinking water reservoirs) and Crenarchaeota (in the rural creek). The aquatic microbial diversity was substantially reduced in water with severe faecal contamination. In addition, the community compositions diverge between waters with dominant anthropogenic or zoogenic pollution origins. These findings present novel interpretations of the effect of anthropo-zoogenic faecal water contamination on microbial diversity in lotic ecosystems.  相似文献   

2.
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012–2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.  相似文献   

3.
Viruses can affect microbial dynamics, metabolism and biogeochemical cycles in aquatic ecosystems. However, viral diversity and functions in agricultural soils are poorly known, especially in the rhizosphere. We used virome analysis of eight rhizosphere and bulk soils to study viral diversity and potential biogeochemical impacts in an agro-ecosystem. The order Caudovirales was the predominant viral type in agricultural soils, with Siphoviridae being the most abundant family. Phylogenetic analysis of the terminase large subunit of Caudovirales identified high viral diversity and three novel groups. Viral community composition differed significantly between bulk and rhizosphere soils. Soil pH was the main environmental driver of the viral community structure. Remarkably, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes were detected in viromes, including glycoside hydrolases, carbohydrate esterases and carbohydrate-binding modules. These results demonstrate that virus-encoded putative auxiliary metabolic genes or metabolic genes that may change bacterial metabolism and indirectly contribute to biogeochemical cycling, especially carbon cycling, in agricultural soil.  相似文献   

4.
Aims: To determine whether American alligators (Alligator mississippiensis) are an unrecognized poikilothermic source of faecal coliform and/or potential pathogenic bacteria in South Carolina’s coastal waters. Methods and Results: Bacteria from the cloaca of American alligators, as well as bacteria from surface water samples from their aquatic habitat, were isolated and identified. The predominant enteric bacteria identified from alligator samples using biochemical tests included Aeromonas hydrophila, Citrobacter braakii, Edwardsiella tarda, Escherichia coli, Enterobacter cloacae, Plesiomonas shigelloides and putative Salmonella, and these were similar to bacteria isolated from the surface waters in which the alligators inhabited. Based on most‐probable‐number enumeration estimates from captive alligator faeces, faecal coliform bacteria numbered 8·0 × 109 g?1 (wet weight) of alligator faecal material, a much higher concentration than many other documented endothermic animal sources. Conclusions: A prevalence of enteric bacteria, both faecal coliforms and potential pathogens, was observed in American alligators. The high faecal coliform bacterial density of alligator faeces may suggest that alligators are a potential source of bacterial contamination in South Carolina coastal waters. Significance and Impact of the Study: These findings help to increase our understanding of faecal coliform and potential pathogenic bacteria from poikilothermic reptilian sources, as there is the potential for these sources to raise bacterial water quality levels above regulatory thresholds.  相似文献   

5.
Although viruses are not the key players of the anaerobic digestion process, they may affect the dynamics of bacterial and archaeal populations involved in biogas production. Until now viruses have received very little attention in this specific habitat; therefore, as a first step towards their characterization, we optimized a virus filtration protocol from anaerobic sludge. Afterwards, to assess dsDNA and RNA viral diversity in sludge samples from nine different reactors fed either with waste water, agricultural residues or solid municipal waste plus agro‐food residues, we performed metagenomic analyses. As a result we showed that, while the dsDNA viromes (21 assigned families in total) were dominated by dsDNA phages of the order Caudovirales, RNA viruses (14 assigned families in total) were less diverse and were for the main part plant‐infecting viruses. Interestingly, less than 2% of annotated contigs were assigned as putative human and animal pathogens. Our study greatly extends the existing view of viral genetic diversity in methanogenic reactors and shows that these viral assemblages are distinct not only among the reactor types but also from nearly 30 other environments already studied, including the human gut, fermented food, deep sea sediments and other aquatic habitats.  相似文献   

6.
Viruses in aquatic ecosystems are characterized by extraordinary abundance and diversity. Thus far, there have been limited studies focused on viral communities in river water systems. Here, we investigated the virome of the Yangtze River Delta using viral metagenomic analysis. The compositions of viral communities from six sampling sites were analyzed and compared. By using library construction and next generation sequencing, contigs and singlet reads similar to viral sequences were classified into 17 viral families, including nine dsDNA viral families, four ssDNA viral families and four RNA viral families. Statistical analysis using Friedman test suggested that there was no significant difference among the six sampling sites (P > 0.05). The viromes in this study were all dominated by the order Caudovirales, and a group of Freshwater phage uvFW species were particularly prevalent among all the samples. The virome from Nanjing presented a unique pattern of viral community composition with a relatively high abundance of family Parvoviridae. Phylogenetic analyses based on virus hallmark genes showed that the Caudovirales order and CRESS-DNA viruses presented high genetic diversity, while viruses in the Microviridae and Parvoviridae families and the Riboviria realm were relatively conservative. Our study provides the first insight into viral community composition in large river ecosystem, revealing the diversity and stability of river water virome, contributing to the proper utilization of freshwater resource.  相似文献   

7.
Summary The occurrence and antibiotic resistance of Escherichia coli in tropical seafood was studied. A 3-tube MPN method was used for determining the level of faecal contamination of fresh and processed seafood. Of the 188 samples tested which included finfish, shellfish, water and ice, 155 were positive for the presence of faecal coliforms following incubation at 44.5 °C. However, E. coli was isolated from only 47% of the samples positive for faecal coliforms. The antibiotic resistance of 116 strains isolated from seafood was tested using 14 different antibiotics including ampicillin, cephalothin, chloramphenicol, ciprofloxacin, gentamycin, nalidixic acid, streptomycin and vancomycin. Seven strains were resistant to more than five antibiotics of which one was resistant to eight antibiotics. The multiple drug resistant strains harboured plasmids of varying sizes. Antibiotic susceptibility studies revealed that seafood from India contains multiple antibiotic resistant strains of E. coli which may serve as a reservoir for antibiotic resistance genes in the aquatic environment. All the strains used in this study did not harbour any virulence genes commonly associated with pathogenic E. coli, when tested by polymerase chain reaction (PCR).  相似文献   

8.
Freshwater ecosystems have been fragmented by the construction of large numbers of dams. In addition to disruption of ecological continuity and physical disturbance downstream, accumulation of large amounts of sediment within run-of-river reservoirs constitutes a latent ecotoxic risk to aquatic communities. To date, run-of-river reservoirs and ecotoxic risks associated with contaminated sediment to the biodiversity and functioning of such systems are little studied. Therefore, the main objective of this study was to describe macroinvertebrate assemblages, and the functioning of these systems, and to propose indicators of sediment contamination to integrate in in-situ risk assessment methodology. To identify specific assemblages of run-of-river reservoirs, we first compared macroinvertebrate assemblages and their biotrait profiles (i.e. from a database of biological and ecological traits) in reservoirs (n = 6) and associated river sites (upstream and downstream of dams). Then, we compared responses of assemblages and biotrait profiles to sediment contamination of the banks and channels of reservoirs to select the most useful spatial scale to identify sediment contamination. Nineteen indicator taxa were observed to be specifically associated with channel habitats of reservoirs. Among these, the abundance of three taxa (Tanypodinae (Diptera), Ephemerella (Ephemeroptera) and Atherix (Diptera)) revealed the effect of metal sediment contamination. “Between-reservoirs” differences in their biotrait profile were found along the contamination gradient, with a shift of communities’ composition and functionality, and an increase in functional similarity. Many traits (response traits), for example “maximum size”, “transverse distribution”, “substrate preferences”, “saprobity”, “temperature”, “resistance forms”, and “locomotion”, were specifically linked to contamination of sediments by metals. This study indicates how sediment contamination can change the structural and functional composition of run-of-river reservoir assemblages. Indicator taxa and response traits identified in this study could improve current risk assessment methodology and potentially enable prediction of the risks of contaminated sediments stored in reservoirs in downstream ecosystems.  相似文献   

9.
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 106 to 1011 viruses/cm3 of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24−30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10−3 in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95−99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses.  相似文献   

10.
Viruses are ubiquitous, abundant and play an important role in all ecosystems. Here, we advance understanding of coastal sediment viruses by exploring links in the composition and abundance of sediment viromes to environmental stressors and sediment bacterial communities. We collected sediment from contaminated and reference sites in Sydney Harbour and used metagenomics to analyse viral community composition. The proportion of phages at contaminated sites was significantly greater than phages at reference sites, whereas eukaryotic viruses were relatively more abundant at reference sites. We observed shifts in viral and bacterial composition between contaminated and reference sites of a similar magnitude. Models based on sediment characteristics revealed that total organic carbon in the sediments explained most of the environmental stress-related variation in the viral dataset. Our results suggest that the presence of anthropogenic contaminants in coastal sediments could be influencing viral community composition with potential consequences for associated hosts and the environment.  相似文献   

11.
In this review of sediment denitrification in estuaries and coastal ecosystems, we examine current denitrification measurement methodologies and the dominant biogeochemical controls on denitrification rates in coastal sediments. Integrated estimates of denitrification in coastal ecosystems are confounded by methodological difficulties, a lack of systematic understanding of the effects of changing environmental conditions, and inadequate attention to spatial and temporal variability to provide both seasonal and annual rates. Recent improvements in measurement techniques involving 15 N techniques and direct N2 concentration changes appear to provide realistic rates of sediment denitrification. Controlling factors in coastal systems include concentrations of water column NO 3 , overall rates of sediment carbon metabolism, overlying water oxygen concentrations, the depth of oxygen penetration, and the presence/absence of aquatic vegetation and macrofauna. In systems experiencing environmental change, either degradation or improvement, the importance of denitrification can change. With the eutrophication of the Chesapeake Bay, the overall rates of denitrification relative to N loading terms have decreased, with factors such as loss of benthic habitat via anoxia and loss of submerged aquatic vegetation driving such effects.  相似文献   

12.
The accumulation of heat shock protein 70 (Hsp70) generally occurs in plants infected with viruses. However, the effect of Hsp70 accumulation on plant viral infection and pathogenesis remains elusive. In this study, the expression of six Hsp70 genes was found to be induced by the four diverse RNA viruses, Tobacco mosaic virus, Potato virus X (PVX), Cucumber mosaic virus and Watermelon mosaic virus, in Nicotiana benthamiana. Heat treatment enhanced the accumulation and systemic infection of these viruses. Similar results were obtained for viral infection in plants heterologously expressing an Arabidopsis cytoplasmic Hsp70 through either a PVX vector or Agrobacterium infiltration. In contrast, viral infection was compromised in cytoplasmic NbHsp70c‐1 gene‐silenced plants. These data demonstrate that the cytoplasmic Hsp70s can enhance the infection of N. benthamiana by diverse viruses.  相似文献   

13.
A virus related to Radish mosaic virus and Turnip ringspot virus (TuRSV) was found infecting rocket plants in Brazil. Predicted amino acids from partial viral RNA sequences placed it closer to TuRSV. We describe here the identification and partial characterization of the first comovirus found infecting a crucifer species in Brazil.  相似文献   

14.
Expression of artificial microRNAs (amiRNAs) in plants can target and degrade the invading viral RNA, consequently conferring virus resistance. Two amiRNAs, targeting the coding sequence shared by the 2a and 2b genes and the highly conserved 3′ untranslated region (UTR) of Cucumber mosaic virus (CMV), respectively, were generated and introduced into the susceptible tomato. The transgenic tomato plants expressing amiRNAs displayed effective resistance to CMV infection and CMV mixed with non-targeted viruses, including tobacco mosaic virus and tomato yellow leaf curl virus. A series of grafting assays indicate scions originated from the transgenic tomato plant maintain stable resistance to CMV infection after grafted onto a CMV-infected rootstock. However, the grafting assay also suggests that the amiRNA-mediated resistance acts in a cell-autonomous manner and the amiRNA signal cannot be transmitted over long distances through the vascular system. Moreover, transgenic plants expressing amiRNA targeting the 2a and 2b viral genes displayed slightly more effective to repress CMV RNA accumulation than transgenic plants expressing amiRNA targeting the 3′ UTR of viral genome did. Our work provides new evidence of the use of amiRNAs as an effective approach to engineer viral resistance in the tomato and possibly in other crops.  相似文献   

15.
The study screened the putative viral RNA sequences in the cDNA library of Japanese primrose, and conducted a molecular approach in determining its presence in selected Primula sieboldii accessions showing characteristic viral symptoms. Three putatively viral non-homologous sequence groups of RNA were identified; however, coding for different proteins representing a complete virus structure, it was determined to be singly originating from Cycas necrotic stunt virus (CNSV). Subsequently, sequence-specific primers were customised based from the non-homologous-sequence groups; however, amplification data showed no association between the presence of the putative viral RNA sequences and the identified characteristic virus symptoms. Despite this, amplification of the three non-homologous sequences is fully correlated. Thus, Japanese primrose was potentially identified as an alternate host of CNSV.  相似文献   

16.
Intensive vegetable production is constantly facing the emergence of new viral diseases. Apart from the intrinsic features of viruses as plant pathogens, the highly dynamic turnover of cultivars and cultural practices, and the global trade of seeds and products characteristic of intensive vegetable production may favour the emergence of new viruses, as well as the expansion of the geographical range of vectors responsible for their dissemination. Indeed, the efficient transmission of viruses plays a major role in the impact and outcome of viral epidemics. Whiteflies (Hemiptera: Aleyrodidae) that belong to the genera Bemisia and Trialeurodes are efficient virus vectors. Whiteflies transmit viruses of at least four genera, one of DNA viruses, the genus Begomovirus, and three of RNA viruses, Crinivirus, Ipomovirus and Torradovirus. Begomoviruses have been the subject of recent reviews. In this article we review the genome structure, epidemiology and control of whitefly‐transmitted RNA viruses that belong to the genera Crinivirus, Ipomovirus and Torradovirus, with an extended discussion on the particular viruses within these genera that are currently causing important outbreaks, such are Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Tomato chlorosis virus (ToCV) and Tomato torrado virus (ToTV).  相似文献   

17.
The Alexandrium spp. resting cysts were found abundantly in faecal pellets collected from the bottom sediments at two stations in Hiroshima Bay. It is considered that these faecal pellets were excreted by the macrobenthos, such as polychaeta and mollusca, based on their size and morphology. Polychaeta was the most dominant macrobenthos, and mollusca was the second most dominant group in Hiroshima Bay. The resting cysts of Alexandrium spp. in the bottom sediments at the two stations were counted in both the faecal pellets of macrobenthos and in the surrounding sediment. As a result, the number of cysts in the faecal pellets accounted for 28.9-35.2% of total cysts. In addition, cysts isolated from faecal pellets had almost the same germination ability as those in the sediment. Thus, Alexandrium cysts are tolerant to the predation and digestive processes of macrobenthic organisms.  相似文献   

18.
Studies of marine viromes (viral metagenomes) have revealed that DNA viruses are highly diverse and exhibit biogeographic patterns. However, little is known about the diversity of RNA viruses, which are mostly composed of eukaryotic viruses, and their biogeographic patterns in the oceans. A growth in global commerce and maritime traffic may accelerate spread of diverse and non-cosmopolitan DNA viruses and potentially RNA viruses from one part of the world to another. Here, we demonstrated through metagenomic analyses that failure to comply with mid-ocean ballast water exchange regulation could result in movement of viromes including both DNA viruses and RNA viruses (including potential viral pathogens) unique to geographic and environmental niches. Furthermore, our results showed that virus richness (known and unknown viruses) in ballast water is associated with distance between ballast water exchange location and its nearest shoreline as well as length of water storage time in ballast tanks (voyage duration). However, richness of only known viruses is governed by local environmental conditions and different viral groups have different responses to environmental variation. Overall, these results identified ballast water as a factor contributing to ocean virome transport and potentially increased exposure of the aquatic bioshpere to viral invasion.  相似文献   

19.
Viruses are the most abundant known infectious agents on the planet and are significant drivers of diversity in a variety of ecosystems. Although there have been numerous studies of viral communities, few have focused on viruses within the indigenous human microbiota. We analyzed 2 267 695 virome reads from viral particles and compared them with 263 516 bacterial 16S rRNA gene sequences from the saliva of five healthy human subjects over a 2- to 3-month period, in order to improve our understanding of the role viruses have in the complex oral ecosystem. Our data reveal viral communities in human saliva dominated by bacteriophages whose constituents are temporally distinct. The preponderance of shared homologs between the salivary viral communities in two unrelated subjects in the same household suggests that environmental factors are determinants of community membership. When comparing salivary viromes to those from human stool and the respiratory tract, each group was distinct, further indicating that habitat is of substantial importance in shaping human viromes. Compared with coexisting bacteria, there was concordance among certain predicted host–virus pairings such as Veillonella and Streptococcus, whereas there was discordance among others such as Actinomyces. We identified 122 728 virulence factor homologs, suggesting that salivary viruses may serve as reservoirs for pathogenic gene function in the oral environment. That the vast majority of human oral viruses are bacteriophages whose putative gene function signifies some have a prominent role in lysogeny, suggests these viruses may have an important role in helping shape the microbial diversity in the human oral cavity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号