首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis of bombyxin-IV, a disulfide-linked, heterodimeric, insulin superfamily peptide from the silkworm,Bombyx mori. The two chains (A- and B-chains) were synthesized separately by the solid-phase method using fluoren-9-ylmethoxycarbonyl (Fmoc) group as a protecting group for -amino group. Three disulfide bonds were bridged step by step (A6–A11, A20–B22, and A7–B10) in a good yield. Synthetic bombyxin-IV was identical with natural one with regard to the retention time on a reversed-phase column and the molecular weight measured by mass spectrometry. Circular dichroism (CD) spectrum of the synthetic bombyxin-IV was very similar to that of the natural one. The specific activity of synthetic bombyxin-IV is equal to that of natural one (0.1 ng/Samia unit). These results suggest that the synthetic bombyxin-IV has the tertiary structure identical with the natural peptide. Our method developed for synthesis of bombyxin-IV would be generally applicable to the synthesis of insulin-like heterodimeric peptides.  相似文献   

2.
Nanodiscs are composed of scaffold protein or peptide such as apolipoprotein A‐I (apoA‐I) and phospholipids. Although peptide‐based nanodiscs have an advantage to modulate the size of nanodiscs by changing phospholipid/peptide ratios, they are usually less stable than apoA‐I‐based nanodiscs. In this study, we designed a novel nanodisc scaffold peptide (NSP) that has proline‐punctuated bihelical amphipathic structure based on apoA‐I mimetic peptides. NSP formed α‐helical structure on 1‐palmitoyl‐2‐oleoyl phosphatidylcholine (POPC) nanodiscs prepared by cholate dialysis method. Dynamic light scattering measurements demonstrated that diameters of NSP nanodiscs vary depending upon POPC/NSP ratios. Comparison of thermal unfolding of nanodiscs monitored by circular dichroism measurements demonstrated that NSP forms much more stable nanodiscs with POPC than monohelical peptide, 4F, exhibiting comparable stability to apoA‐I‐POPC nanodiscs. Intrinsic Trp fluorescence measurements showed that Trp residues of NSP exhibit more hydrophobic environment than that of 4 F on nanodiscs, suggesting the stronger interaction of NSP with phospholipids. Thus, the bihelical structure of NSP appears to increase the stability of nanodiscs because of the enhanced interaction of peptides with phospholipids. In addition, NSP as well as 4F spontaneously solubilized POPC vesicles into nanodiscs without using detergent. These results indicate that bihelical NSP forms nanodiscs with comparable stability to apoA‐I and has an ability to control the size of nanodiscs simply by changing phospholipid/peptide ratios. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
The development of rational methods to design 'continuous' sequence mimetics of discontinuous regions of protein sequence has, to now, been only marginally successful. This has been largely due to the difficulty of constraining the recognition elements of a mimetic structure to the relative conformational and spatial orientations present in the parent molecule. Using peptide mapping to determine 'active' antigen recognition residues, molecular modeling, and a molecular dynamics trajectory analysis, we have developed a peptide mimic of an anti-CD4 antibody, containing antigen contact residues from multiple CDRs. The design described is a 27-residue peptide formed by juxtaposition of residues from 5 CDR regions. It displays an affinity for the antigen (CD4) of 0.9nM, compared to 2nM for the parent antibody ST40. Nevertheless, the mimetic shows low biological activity in an anti-retroviral assay.  相似文献   

4.
The mode of disulfide linkages in bombyxin-IV, an insulin superfamily peptide consisting of A- and B-chains, was determined as A6–A11, A7–B10, and A20–B22. An intermolecular bond of A20–B22 was identified by sequencing and mass spectrometric analysis of the fragments generated by thermolysin digestion of natural bombyxin-IV. The mode of the remaining two bridges was determined by chemical and selective synthesis of three possible disulfide bond isomers of bombyxin-IV. A- and B-chains were synthesized by solid-phase method, and three disulfide bonds were bridged stepwise and in a fully controlled manner. Retention time on reversed-phase high-performance liquid chromatography (HPLC), thermolysin digests, and biological activity of the synthetic [A6–A11, A7–B10, A20–B22-cystine]-bombyxin-IV revealed that it was identical with the natural bombyxin-IV. Two other isomers with respect to disulfide bond arrangement, [A6–A7, A11–B10, A20–B22-cystine]- and [A6–B10, A7–A11, A20–B22-cystine]-bombyxin-IVs, were distinguishable from the natural one by use of HPLC, thermolysin digestion, and bioassay.  相似文献   

5.
Insulin is a key hormone involved in the regulation of overall energetic homeostasis of the organism. The dimeric character of the receptor for insulin evokes ideas about its activation or inhibition with peptide dimers that could either trigger or block the structural transition of the insulin receptor, leading to its activation. Herewith, we present the chemical engineering and biological characterization of several series of insulin dimers or dimers of specific peptides that should be able to bind receptors for insulin or insulin growth factor 1. The hormones or peptides in the dimers were interconnected with different linkers, consisting of triazole moieties and 3, 6, 8, 11, or 23 polyethylene glycol units. The prepared dimers were weaker in binding to insulin receptors than human insulin. However, some of the insulin dimers showed preferential binding specificity toward the isoform A of the insulin receptor, and the insulin dimers also stimulated the insulin receptor more strongly than would be consistent with their binding affinities. Our results suggest that designing insulin dimers may be a promising strategy for modulating the ability of the hormone to activate the receptor or to alter its specificity toward insulin receptor isoforms.  相似文献   

6.
Summary Protein engineering techniques were employed to graft the known anticoagulant Arg-Gly-Asp (RGD) motifcontaining sequences onto the surface of a mutant, inactive insulin framework. To probe the effect of a disulfide bond on the resultant anticoagulant activity, a native RGD-containing sequence from disintegrin dendroaspin, CFTPRGDMPGPYC, as well as a modified sequence, SFTPRGDMPGPYS were each examined. The peptide was placed between the C-terminal of the B chain and the N-terminal of the A chain and connected with B27 and A1 residues of the inactive insulin that lacks the characteristic intramolecular A6–11 disulfide bond within the A chain. The two RGD-containing insulin genes were over-expressed inE. coli, and purified and designated as RGD-Cys-Ins and RGD-Ser-Ins, respectively. Their amino acid compositions and mass data were in good agreement with those of expected. The RGD-Cys-Ins showed inhibition of platelet aggregation with an IC50 of 3 μM, while the latter was 3.5-fold less active. Thein vivo assay also indicated that the RGD-Cys-Ins had a higher activity in prolonging the bleeding time in mice than RGD-Ser-Ins. Both RGD-Cys-Ins and RGD-Ser-Ins retained about 25% of the proinsulin immunoactivity and had almost no insulin receptor binding activity. The results indicate the necessity for the RGD motif to be conformationally constrained for it to elicit a greater anticoagulant activity.  相似文献   

7.
Protein engineering techniques were employed to graft the known anticoagulant Arg-Gly-Asp (RGD) motif-containing sequences onto the surface of a mutant, inactive insulin framework. To probe the effect of a disulfide bond on the resultant anticoagulant activity, a native RGD-containing sequence from disintegrin dendroaspin, CFTPRGDMPGPYC, as well as a modified sequence, SFTPRGDMPGPYS, were each examined. The peptide was placed between the C-terminal of the B chain and the N-terminal of the A chainand connected with B27 and A1 residues of the inactive insulin that lacks the characteristic intramolecular A6-11 disulfide bondwithin the A chain. The two RGD-containing insulin genes were over-expressed in E. coli, and purified and designatedas RGD-Cys-Ins and RGD-Ser-Ins, respectively. Their amino acid compositions and mass data were in good agreement with those ofexpected. The RGD-Cys-Ins showed inhibition of platelet aggregation with an IC50 of 3 M, while the latter was3.5-fold less active. The in vivo assay also indicatedthat the RGD-Cys-Ins had a higher activity in prolonging the bleeding time in mice than RGD-Ser-Ins. Both RGD-Cys-Ins and RGD-Ser-Ins retained about 25% of the proinsulin immunoactivity and had almost no insulin receptor binding activity. The results indicate the necessity for the RGD motif to be conformationally constrained for it to elicit a greater anticoagulant activity.  相似文献   

8.
Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non‐covalent oligomerization. All known insulin variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra‐chain bond in the A‐chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four‐disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs with markedly improved stability and gained insights into the instability of analogs with seven cysteine residues, importance of dimerization for stability, insulin fibril formation process, and the conformation of insulin binding to its receptor. Our results also open the way for new strategies in the development of insulin biopharmaceuticals. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
《Cell metabolism》2022,34(2):240-255.e10
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

10.
Human neurotrophin-3 (NT-3) is a member of the nerve growth factor (NGF) family of neurotrophic factors, and the recombinant protein is being developed as a therapeutic for neurodegenerative diseases. The final product purity and lot-to-lot variation are monitored routinely by peptide mapping. However, only the N-terminal region of NT-3 was susceptible to proteolysis under native conditions. Complete digestion required that the protein be chemically modified by reduction and S-alkylation prior to proteolysis. Complete proteolytic degradation of the protein was achieved simply by an intial denaturation of NT-3 in 6 M guanidinium chloride (pH 6) for 2 hr at 37°C, followed by a tenfold dilution with the digestion buffer (0.1 M Tris-HCl, 1 mM CaCl2 at pH 7.0) and immediate addition of chymotrypsin at 1% by weight. Direct comparison of the peptide map with an identical aliquot that had been reduced and alkylated also allowed the establishment of the cystine linkages present in NT-3: Cys14 to Cys79, Cys57 to Cys108, and Cys67 to Cys110. This disulfide structure is homologous to the NGF family of neurotrophic factors.  相似文献   

11.
Insulin-like peptide 3 (INSL3) is a peptide hormone belonging to the relaxin-insulin superfamily of peptides that plays important roles in testes descent, oocyte maturation and the control of male germ cell apoptosis. These actions are mediated via a specific G-protein coupled receptor, LGR8. Previous structure-activity studies have shown that the key binding site of INSL3 is situated within its B-chain. Recent studies in our laboratory have led to the identification of a cyclic peptide mimetic 2 of the INSL3 B-chain, which we have shown to compete with the binding of [33P]-relaxin to LGR8 expressed in HEK293T cells, and to inhibit cAMP-mediated signaling in these cells, i.e. it is an antagonist of INSL3. In order to further define the structure-activity relationships of cyclic analogues of the INSL3 B-chain, we used a structure-based approach to design a series of cyclic, disulfide-constrained INSL3 B-chain mimetics. To do this, we first created a model of the 3D structure of INSL3 using the crystal structure of human relaxin as a template. This model of INSL3 was then used as a template to design a series of disulfide-constrained mimetics of the INSL3 B-chain. The peptides were synthesized by solid-phase peptide synthesis using pseudoproline dipeptides to improve the synthesis outcome. Of the seven prepared INSL3 B-chain mimetics, three compounds were found to have partial displacement activity, while four were able to completely displace [33P]-relaxin from LGR8, including compounds that were markedly shorter than compound 2. The best of these, mimetic 6, showed significantly greater affinity for LGR8 than compound 2, but still displayed around 1000-fold less affinity for LGR8 than native INSL3. Analysis of selected mimetics for their alpha-helical content using circular dichroism (CD) spectroscopy revealed that, generally, the mimetics showed less than expected helicity. The inability of the compounds to display true native INSL3 structure is likely contributing to their reduced receptor binding affinity. We are currently examining alternative INSL3 B-chain mimetics that might better present key receptor binding residues in the native INSL3-like conformation.  相似文献   

12.
Stem cell factor (SCF) and erythropoietin are essential for normal erythropoiesis and induce proliferation and differentiation synergistically for erythroid progenitor cells. Here, we report our work on construction of SCF/erythropoietin mimetic peptide (EMP) fusion protein gene, in which human SCF cDNA (1-165aa) and EMP sequence (20aa) were connected using a short (GGGGS) or long (GGGGSGGGGGS) linker sequence. The SCF/EMP gene was cloned into the pBV220 vector and expressed in the Escherichia coli DH5alpha strain. The expression level of the fusion protein was about 30% of total cell protein. The resulting inclusion bodies were solubilized with 8 M urea, followed by dilution refolding. The renatured protein was subsequently purified by Q-Sepharose FF column. The final product was >95% pure by SDS-PAGE and the yield of fusion protein was about 40 mg/L of culture. UT-7 cell proliferation and human cord blood cell colony-forming assays showed that the fusion proteins exhibited more potent activity than recombinant human SCF, suggesting a new strategy to enhance biological activities of growth factors.  相似文献   

13.
A peptide model of insulin folding intermediate with one disulfide   总被引:4,自引:0,他引:4       下载免费PDF全文
Insulin folds into a unique three-dimensional structure stabilized by three disulfide bonds. Our previous work suggested that during in vitro refolding of a recombinant single-chain insulin (PIP) there exists a critical folding intermediate containing the single disulfide A20-B19. However, the intermediate cannot be trapped during refolding because once this disulfide is formed, the remaining folding process is very quick. To circumvent this difficulty, a model peptide ([A20-B19]PIP) containing the single disulfide A20-B19 was prepared by protein engineering. The model peptide can be secreted from transformed yeast cells, but its secretion yield decreases 2-3 magnitudes compared with that of the wild-type PIP. The physicochemical property analysis suggested that the model peptide adopts a partially folded conformation. In vitro, the fully reduced model peptide can quickly and efficiently form the disulfide A20-B19, which suggested that formation of the disulfide A20-B19 is kinetically preferred. In redox buffer, the model peptide is reduced gradually as the reduction potential is increased, while the disulfides of the wild-type PIP are reduced in a cooperative manner. By analysis of the model peptide, it is possible to deduce the properties of the critical folding intermediate with the single disulfide A20-B19.  相似文献   

14.
As part of our aim to study the conformation of insulin in solution by time-resolved fluorescence spectroscopy, we have synthesized the analogue [19-Tryptophan-A]insulin. In this compound, the tyrosine residue at position 19 of the A-chain of insulin, one of the most strongly conserved residues in insulins from various species, is substituted with the strongly fluorescent tryptophan residue. [19-Tryptophan-A]insulin displays 4.1±1.9% of the potency of natural insulin in binding to the insulin receptor from rat liver plasma membranes, 5.0±2.3% in stimulating lipogenesis in rat adipocytes, and 75.7±4% of the potency of insulin in radioimmunoassay. In connection with our previous work, these data indicate that an aromatic side chain at position A19 of insulin seems necessary but not sufficient for high biological activity. We further conclude that in regard to the immunogenic determinants of insulin, tryptophan in position A19 is an essentially neutral substitution for tyrosine in that position, in sharp contrast to the situation with regard to biological activity.  相似文献   

15.
We examined mechanisms by which L-4F reduces obesity and diabetes in obese (ob) diabetic mice. We hypothesized that L-4F reduces adiposity via increased pAMPK, pAKT, HO-1, and increased insulin receptor phosphorylation in ob mice. Obese and lean mice were divided into five groups: lean, lean-L-4F-treated, ob, ob-L-4F-treated, and ob-L-4F-LY294002. Food intake, insulin, glucose adipocyte stem cells, pAMPK, pAKT, CB1, and insulin receptor phosphorylation were determined. Subcutaneous (SAT) and visceral adipose tissue (VAT) were determined by MRI and hepatic lipid content by magnetic resonance spectroscopy. SAT and VAT volumes decreased in ob-L-4F-treated animals compared with control. L-4F treatment decreased hepatic lipid content and increased the numbers of small adipocytes (P < 0.05) and phosphorylation of insulin receptors. L-4F decreased CB1 in SAT and VAT and increased pAKT and pAMPK in endothelium. L-4F-mediated improvement in endothelium was prevented by LY294002. Inhibition of pAKT and pAMPK by LY294002 was associated with an increase in glucose levels. Upregulation of HO-1 by L-4F produced adipose remodeling and increased the number of small differentiated adipocytes. The anti-obesity effects of L-4F are manifested by a decrease in visceral fat content with reciprocal increases in adiponectin, pAMPK, pAKT, and phosphorylation of insulin receptors with improved insulin sensitivity.  相似文献   

16.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

17.
A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions bothin vitro andin vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone.In conclusion: in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.  相似文献   

18.
Protein-tyrosine phosphatases (PTPases) have been implicated in the physiological regulation of the insulin signalling pathway. In cellular and molecular studies, the transmembrane, receptor-type PTPase LAR and the intracellular, non-receptor enzyme PTP1B have been shown to have a direct impact on insulin action in intact cell models. Since insulin signalling can be enhanced by reducing the abundance or activity of specific PTPases, pharmaceutical agents directed at blocking the interaction between individual PTPases and the insulin receptor may have potential clinical relevance to the treatment of insulin-resistant states such as obesity and Type II diabetes mellitus.  相似文献   

19.
Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor‐like receptor (CLR), a class B G protein‐coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM‐1 receptor (AM1R). A disulfide‐bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t‐Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam‐based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether‐based mimetics to be well accepted with full AM1R activity. While a reduced selectivity over the calcitonin gene‐related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild–type‐like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.  相似文献   

20.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号