首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 646 毫秒
1.
The southern African late Pliocene to early Pleistocene carnivore guild was much larger than that of the present day. Understanding how this guild may have functioned is important for the reconstruction of carnivore-hominin interactions and to assess the potential for hominin scavenging in southern Africa. In modern ecosystems, the coexistence of larger carnivore species is constrained by several factors, which include high levels of interspecific competition. Here, the composition of the fossil carnivore guild is examined using Sterkfontein Member 4 (Cradle of Humankind, South Africa) as a case study. Sterkfontein Member 4 contains 10 larger carnivore taxa (body mass > 21.5 kg) and may also contain two Australopithecus species. Two possible causes of higher numbers of carnivore species in the South African fossil record are initially considered. First, that there is a bias introduced through comparing assemblages of differing sizes; second, carnivore biodiversity may have been artificially inflated due to previous taxonomic splitting of carnivore species, such as Crocuta. These possibilities are rejected and modern ecological data are used to construct a simple spatial model to determine how many carnivores could have co-existed. Although the resulting model indicates that the carnivore taxa present in Member 4 could have co-occurred, modern ecological studies indicate that it is highly unlikely that they would have co-existed simultaneously. Considering the complex depositional processes that operate in the southern African cave sites, it is proposed that the larger carnivore guild observed in the Sterkfontein Member 4 fossil assemblage is a palimpsest created by time-averaging. In light of this, we suggest that sites which have a large number of carnivore taxa should be examined for time-averaging, while those sites which have relatively few species may be a better reflection of carnivore communities.  相似文献   

2.
Humans, unlike African apes, have relatively robust fifth metatarsals (Mt5) presumably reflecting substantial weight-bearing and stability function in the lateral column of the former. When this morphological difference emerged during hominin evolution is debated. Here we investigate internal diaphyseal structure of Mt5s attributed to Australopithecus (from Sterkfontein), Paranthropus (from Swartkrans), and Homo (from Olduvai, Dmanisi, and Dinaledi) placed in the context of human and African ape Mt5 internal diaphyseal structure. ‘Whole-shaft’ properties were evaluated from 17 cross sections sampling 25% to 75% diaphyseal length using computed tomography. To assess structural patterns, scaled cortical bone thicknesses (sCBT) and scaled second moments of area (sSMA) were visualized and evaluated through penalized discriminant analyses. While the majority of fossil hominin Mt5s exhibited ape-like sCBT, their sSMA were comparatively more human-like. Human-like functional loading of the lateral column existed in at least some fossil hominins, although perhaps surprisingly not in hominins from Dmanisi or Dinaledi.  相似文献   

3.
4.
Because of the greater morphological distances among them, genera should be more robustly recognizable in the fossil record than species are. But there are clearly upper as well as lower bounds to their species inclusivity. Currently, the vast majority of fossils composing the large and rapidly expanding paleoanthropological record are crammed into one of two genera (Australopithecus vs Homo), expanding the latter, especially, far beyond any reasonable morphological or phylogenetic limits. This excessive inclusivity obscures both diversity and the complexities of phylogenetic structure within the hominid family.  相似文献   

5.
《Comptes Rendus Palevol》2019,18(3):335-352
The possibility that the fossils attributed to Australopithecus africanus represent more than a single species is of significance because of the pivotal role that A. africanus has played in discussions about hominin evolution. The A. africanus hypodigm that is currently widely recognized evinces considerable variation in a number of craniodental characters, and this has led to speculation that more than one australopith taxon may be represented among the specimens from Sterkfontein. Although crania, mandibles and teeth have dominated these taxonomic discussions, the Sterkfontein postcranial remains also have been invoked. While several workers have proposed that some of the craniodental remains from Sterkfontein can be partitioned into two groups, there is a notable lack of agreement among them as to their actual sorting. Most of the craniodental observations that have been put forward in support of arguments for taxonomic heterogeneity of the Sterkfontein australopith assemblage have been subjective and anecdotal in nature. So too, the postcranial evidence that has been cited in support of more than one australopith species at Sterkfontein has been largely subjective, and limited to a small number of elements. The results of quantitative statistical analyses of the craniodental and postcranial fossils that have been undertaken to date are not necessarily consistent with the hypothesis of taxonomic heterogeneity.  相似文献   

6.
7.
Papionin monkeys are widespread, relatively common members of Plio‐Pleistocene faunal assemblages across Africa. For these reasons, papionin taxa have been used as biochronological indicators by which to infer the ages of the South African karst cave deposits. A recent morphometric study of South African fossil papionin muzzle shape concluded that its variation attests to a substantial and greater time depth for these sites than is generally estimated. This inference is significant, because accurate dating of the South African cave sites is critical to our knowledge of hominin evolution and mammalian biogeographic history. We here report the results of a comparative analysis of extant papionin monkeys by which variability of the South African fossil papionins may be assessed. The muzzles of 106 specimens representing six extant papionin genera were digitized and interlandmark distances were calculated. Results demonstrate that the overall amount of morphological variation present within the fossil assemblage fits comfortably within the range exhibited by the extant sample. We also performed a statistical experiment to assess the limitations imposed by small sample sizes, such as typically encountered in the fossil record. Results suggest that 15 specimens are sufficient to accurately represent the population mean for a given phenotype, but small sample sizes are insufficient to permit the accurate estimation of the population standard deviation, variance, and range. The suggestion that the muzzle morphology of fossil papionins attests to a considerable and previously unrecognized temporal depth of the South African karst cave sites is unwarranted. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Palaeomagnetic analysis was conducted on speleothems from Members 1-5 at Sterkfontein Cave, South Africa. Palaeomagnetic analysis of siltstone and speleothem from the bulk of Member 4 indicate a reversed magnetic polarity that dates the deposits and its Australopithecus africanus fossils to between 2.58 and ∼2.16 Ma. Further confirmation of this age comes in the form of two short normal polarity events correlated to the Rèunion (∼2.16 Ma) and Huckleberry Ridge (∼2.05 Ma) events in speleothem capping the bulk of Member 4 and coeval with deposition of the final phase of Member 4, including A. africanus fossil Sts 5. At ∼2.16-2.05 Ma, Sts 5 is the youngest representative of A. africanus yet discovered. Palaeomagnetic analysis of the Silberberg Grotto deposits identifies a single short geomagnetic field event in flowstone overlying the StW 573 Australopithecus fossil, which is suggested to represent the Rèunion event at ∼2.16 Ma. This further supports the uranium lead age estimates of 2.3-2.2 Ma for the StW 573 fossil. Based on a reversed polarity for the deposits below the skeleton it cannot be older than 2.58 Ma. If StW 573 is considered to be a second species of Australopithecus then this indicates that two species of Australopithecus are present at Sterkfontein between 2.6 and 2.0 Ma. All of the Member 5 deposits date to less than 1.8 Ma based on a comparison of palaeomagnetic, faunal, and electron spin resonance age estimates. The StW 53 fossil bearing infill (M5A) is intermediate in age between Member 4 and the rest of Member 5 (B-C) at around 1.78-1.49 Ma. The rest of Member 5 (B-C) containing Oldowan and Acheulian stone tools and Homo and Paranthropus fossils was deposited gradually between 1.40 and 1.07 Ma, much younger than previously suggested.  相似文献   

9.
Field research at the fossil-bearing deposits in the Afar Depression began in the 1970s. Prior to this, hominin fossils older than 3.0 Mya consisted of only a handful of fragments. During Phase I, the International Afar Research Expedition to Hadar, Ethiopia collected some 240 fossil hominins from Hadar over a time range of 3.0–3.4 Mya. Along with hominin fossils from Laetoli, they were deemed a new species, Australopithecus afarensis. This taxon was posited as the last common ancestor to robust Australopithecus and the Homo lineage in eastern Africa. Phase II research under the Hadar Research Project has added strength to the Phase I results, including the first association of a Homo fossil with stone tools at 2.4 Mya. This presentation is a cursory synopsis of the importance and implications of the hominin fossils recovered at Hadar during over the last 34 years.  相似文献   

10.
We investigate cochlear variation, an indirect evidence of auditory capacities among early hominins and extant catarrhine species, in order to assess (i) the phylogenetic signal of relative external cochlear length (RECL) and oval window area (OWA), (ii) the evolutionary model with the highest probability of explaining our observed data, (iii) some hominin ancestral nodes for RECL and OWA. RECL has a high phylogenetic signal under a Brownian motion model, and is closely correlated with body mass. Our model-based method has the advantage over parsimony-based methods of incorporating branch lengths in a phylo-morphospace, and this shows RECL shifted towards significantly higher values at the Homo erectus-Homo sapiens node. We also observe that the StW 53 and KB 6067 fossil specimens from Sterkfontein and Kromdraai likely represent one or two distinct, smaller-bodied and less derived hominin form(s) compared to Paranthropus specimens represented at Swartkrans.  相似文献   

11.
A recent article in this journal concluded that a sample of early Pleistocene hominin crania assigned to genus Homo exhibits a pattern of size variation that is time dependent, with specimens from different time periods being more different from each other, on average, than are specimens from the same time period. The authors of this study argued that such a pattern is not consistent with the presence of multiple lineages within the sample, but rather supports the hypothesis that the fossils represent an anagenetically evolving lineage (i.e., an evolutionary species). However, the multiple‐lineage models considered in that study do not reflect the multiple‐species alternatives that have been proposed for early Pleistocene Homo. Using simulated data sets, I show that fossil assemblages that contain multiple lineages can exhibit the time‐dependent pattern of variation specified for the single‐lineage model under certain conditions, particularly when temporal overlap among fossil specimens attributed to the lineages is limited. These results do not reject the single‐lineage hypothesis, but they do indicate that rejection of multiple lineages in the early Pleistocene Homo fossil record is premature, and that other sources of variation, such as differences in cranial shape, should be considered.  相似文献   

12.
The Sterkfontein fossil site in South Africa has produced the largest concentration of early hominin fossils from a single locality. Recent reports suggest that Australopithecus from this site is found within a broad paleontological age of between 2.5-3.5 Ma (Partridge [2000] The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 100-125; Partridge et al. [2000a], The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 129-130; Kuman and Clarke [2000] J Hum Evol 38:827-847). Specifically, the hominin fossil commonly referred to as the "Little Foot" skeleton from Member 2, which is arguably the most complete early hominin skeleton yet discovered, has been magnetostratigraphically dated to 3.30-3.33 Ma (Partridge [2000] The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 100-125; Partridge et al. [2000a], The Cenozoic of Southern Africa, Oxford: Oxford Monographs, p. 129-130). More recent claims suggest that hominin fossils from the Jacovec Cavern are even older, being dated to approximately 3.5 Ma. Our interpretation of the fauna, the archeometric results, and the magnetostratigraphy of Sterkfontein indicate that it is unlikely that any Members yet described from Sterkfontein are in excess of 3.04 Ma in age. We estimate that Member 2, including the Little Foot skeleton, is younger than 3.0 Ma, and that Member 4, previously dated to between 2.4-2.8 Ma, is more likely to fall between 1.5-2.5 Ma. Our results suggest that Australopithecus africanus should not be considered as a temporal contemporary of Australopithecus afarensis, Australopithecus bahrelghazali, and Kenyanthropus platyops.  相似文献   

13.
Synopsis We assess morphological diversity of species of the Cynoscion group in the Gulf of Guayaquil (GOG) using traditional morphometric methods. Five species from the GOG assemblage (C. albus, C. analis, C. phoxocephalus, C. squamipinnis, and Isopisthus remifer) are compared to four species from a relatively well-studied assemblage in the western Atlantic (C. arenarius, C. nebulosus, C. nothus, and C. regalis). The two regional species assemblages broadly overlap in morphology, but sympatric species segregate relatively well within each assemblage. The GOG species segregate primarily along the major axis of shape variation in the study, which is associated with variation in the anal, second dorsal, and caudal fins. The western Atlantic species segregate primarily along the second major axis of shape variation, which is most strongly associated with variation in gill raker length, and less strongly with pectoral fin length, eye diameter, and length of the third dorsal spine. Patterns of morphological divergence among the western Atlantic species support the hypothesis that morphological divergence is associated with ecological divergence. Comparisons across assemblages indicate that morphological divergence among species in the GOG is substantial. Consequently, Cynoscion species in the GOG may be highly divergent in ecological habits, which would have important management implications, but further ecological research is needed. This study provides a first glimpse into the major patterns of morphological diversification in the Cynoscion group.1Bryant D., E. Rodenburg, T. Cox & D. Nielsen. 1995. Coastlines at Risk: an Index of Potential Development-Related Threats to Coastal Ecosystems. WRI Indicator Brief, World Resources Institute, Washington, D.C.  相似文献   

14.
Quantitative, evolutionary models that incorporate within- and between-species variation are critical for interpreting the fossil record of human diversity, and for making taxonomic distinctions. However, small sample sizes, sexual dimorphism, temporal trends, geographic variation, and the limited number of relevant extant models have always made the consideration of variation difficult for paleoanthropologists. Here we provide a brief overview of current early hominin diversity. We then argue that for many species our limited understanding of within species variation hampers our ability to make taxonomic decisions with any level of statistical certainty. Perhaps more significantly, the underlying causes of between-species variation among early hominins are poorly studied. There have been few attempts to correlate aspects of the phenotype with meaningful evidence for niche differentiation, to demonstrate the selective advantage of traits, or to provide other evidence for macroevolutionary divergence. Moreover, current depictions of vast pattern (but not size) diversity are inconsistent with expectations derived from most other extant primate clades that have adaptively radiated. If indeed the early hominin record is highly speciose, the reasons for this remain unclear.  相似文献   

15.
The functional anatomy of the hominin foot has played a crucial role in studies of locomotor evolution in human ancestors and extinct relatives. However, foot fossils are rare, often isolated, and fragmentary. Here, we describe a complete hominin second metatarsal (StW 89) from the 2.0-2.6 million year old deposits of Member 4, Sterkfontein Cave, South Africa. Like many other fossil foot bones, it displays a mosaic of derived human-like features and primitive ape-like features. StW 89 possesses a domed metatarsal head with a prominent sulcus, indicating dorsiflexion at the metatarsophalangeal joint during bipedal walking. However, while the range of motion at the metatarsophalangeal joint is human-like in dorsiflexion, it is ape-like in plantarflexion. Furthermore, StW 89 possesses internal torsion of the head, an anatomy decidedly unlike that found in humans today. Unlike other hominin second metatarsals, StW 89 has a dorsoplantarly gracile base, perhaps suggesting more midfoot laxity. In these latter two anatomies, the StW 89 second metatarsal is quite similar to the recently described second metatarsal of the partial foot from Burtele, Ethiopia. We interpret this combination of anatomies as evidence for a low medial longitudinal arch in a foot engaged in both bipedal locomotion, but also some degree of pedal, and perhaps even hallucal, grasping. Additional fossil evidence will be required to determine if differences between this bone and other second metatarsals from Sterkfontein reflect normal variation in an evolving lineage, or taxonomic diversity.  相似文献   

16.
The 3.5-Myr-old hominin cranium KNM-WT 40000 from Lomekwi, west of Lake Turkana, has been assigned to a new hominin genus and species, Kenyanthropus platyops, on the basis of a unique combination of derived facial and primitive neurocranial features. Central to the diagnosis of K. platyops is the morphology of the maxilla, characterized by a flat and relatively orthognathic subnasal region, anteriorly placed zygomatic processes and small molars. To study this morphology in more detail, we compare the maxillae of African Plio-Pleistocene hominin fossils and samples of modern humans, chimpanzees and gorillas, using conventional and geometric morphometric methods. Computed tomography scans and detailed preparation of the KNM-WT 40000 maxilla enable comprehensive assessment of post-mortem changes, so that landmark data characterizing the morphology can be corrected for distortion. Based on a substantially larger comparative sample than previously available, the results of statistical analyses show that KNM-WT 40000 is indeed significantly different from and falls outside the known range of variation of species of Australopithecus and Paranthropus, contemporary Australopithecus afarensis in particular. These results support the attribution of KNM-WT 40000 to a separate species and the notion that hominin taxonomic diversity in Africa extends back well into the Middle Pliocene.  相似文献   

17.
The cranial morphology of fossil hominids between the end of the Early Pleistocene and the beginning of the Middle Pleistocene provides crucial evidence to understand the distribution in time and space of the genus Homo. This evidence is critical for evaluating the competing models regarding diversity within our genus. The debate focuses on two alternative hypotheses, one basically anagenetic and the other cladogenetic. The first suggests that morphological change is so diffused, slow, and steady that it is meaningless to apply species names to segments of a single lineage. The second is that the morphological variation observed in the fossil record can best be described as a number of distinct species that are not connected in a linear ancestor‐descendant sequence. Today much more fossil evidence is available than was in the past to test these alternative hypotheses, as well as intermediate variants. Special attention must be paid to Africa because this is the most probable continental homeland for both the origin of the genus Homo (around 2.5–2 Ma), 1 as well as the site, two million or so years later, of the emergence of the species H. sapiens. 2 However, the African fossil record is very poorly represented between 1 Ma and 600 ka. Europe furnishes recent discoveries in this time range around the Matuyama‐Brunhes chron boundary (780,000 years ago), a period for which, at present, we have no noteworthy fossil evidence in Africa or the Levant. Two penecontemporaneous sources of European fossil evidence, the Ceprano calvaria (Italy) 3 and the TD6 fossil assemblage of Atapuerca (Spain) 4 are thus of great interest for testing hypotheses about human evolution in the fundamental time span bracketed between the late Early and the Middle Pleistocene. This paper is based on a phenetic approach to cranial variation aimed at reviewing the Early‐to‐Middle Pleistocene trajectories of human evolution. The focus of the paper is on neither the origin nor the end of the story of the genus Homo, but rather its chronological and phylogenetic core. Elucidation of the evolutionary events that happened around 780 ka during the transition from the Early to Middle Pleistocene is one of the new frontiers for human paleontology, and is critical for understanding the processes that ultimately led to the origin of H. sapiens.  相似文献   

18.
In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486–1496, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The fossil record of primate and human evolution cannot provide accurate estimates of within species variation and integration. This means that we cannot directly observe how patterns of integration have evolved over time in this lineage. And yet, our interpretations of fossil diversity are awash with assumptions about variation patterning in precisely these fossil taxa. Most commonly, researchers rely on extant models of variation for interpreting past diversity, by assuming equality of variation (and occasionally covariation) among extant and fossil populations. Yet one of the things we know from studies of integration in primates is that patterns of morphological covariation can differ among even closely related taxa, indicating that they have diverged over evolutionary time, either in response to selection or as the result of neutral evolution. At the same time, overall patterns of integration remain remarkably similar, meaning that in many respects they are highly conserved evolutionarily. Taken together, these seemingly contradictory observations offer an important conceptual framework for interpreting patterns that we observe in the fossil past. This framework dictates that while we can use patterns of covariation in extant taxa as proxies for extinct diversity, and indeed their conserved nature makes them superior to approaches that rely on variation alone, we also need to account for the fact that such patterns change over time, and incorporate that into our models. Here I provide examples using covariation patterns estimated from modern humans and African great apes to demonstrate the extent to which divergence in covariance structure might affect our interpretations of hominin diversity.
Rebecca Rogers AckermannEmail:
  相似文献   

20.
The stable carbon isotope ratio of fossil tooth enamel carbonate is determined by the photosynthetic systems of plants at the base of the animal's foodweb. In subtropical Africa, grasses and many sedges have C(4)photosynthesis and transmit their characteristically enriched 13C/(12)C ratios (more positive delta13C values) along the foodchain to consumers. We report here a carbon isotope study of ten specimens of Australopithecus africanus from Member 4, Sterkfontein (ca. 2.5 to 2.0Ma), compared with other fossil mammals from the same deposit. This is the most extensive isotopic study of an early hominin species that has been achieved so far. The results show that this hominin was intensively engaged with the savanna foodweb and that the dietary variation between individuals was more pronounced than for any other early hominin or non-human primate species on record. Suggestions that more than one species have been incuded in this taxon are not supported by the isotopic evidence. We conclude that Australopithecus africanus was highly opportunistic and adaptable in its feeding habits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号