首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Review: ethidium fluorescence assays. Part 1. Physicochemical studies.   总被引:10,自引:13,他引:10       下载免费PDF全文
DNA and RNA can be assayed rapidly and very sensitively by exploiting the enhanced fluorescence of ethidium intercalated into duplex regions. By assaying at different pHs and introducing a heating/cooling cycle, a great many physicochemical aspects of DNA and RNA can be studied avoiding the use of radiolabels, and often giving information not otherwise readily obtainable. Studies are described on duplex DNA which involve measurement of extinction coefficients, cross-linking by chemicals, Cot curve analysis as well as estimation of drug-DNA binding constants. The assays can be adapted to investigate multi-stranded nucleic acid structures. The use of covalently closed circular DNA also allows rapid and extremely sensitive measurements of nicking caused by irradiation or drugs.  相似文献   

2.
3.
Two endo-1,3,-beta-d-glucanases (I and II, EC 3.2.1.6) are present in etiolated peas at opposite ends of the stem. Glucanase I from subapical regions degrades substrates to a series of low molecular weight dextrins, and is most readily assayed reductometrically (e.g. as laminarinase). Glucanase II from basal regions preferentially hydrolyzes internal linkages of long chains, and is most sensitively assayed viscometrically (e.g. as carboxymethylpachymanase). The activity of glucanase II but not I increases greatly near the apex in response to treatment of the tissue with auxin, and ethylene gas suppresses endogenous activities and the auxin response, i.e. levels of these enzymes are under developmental controls which can be regulated. Different natural substrates for the two enzymes were identified primarily in tissue fractions soluble in hot water. Substrates for glucanase I are concentrated in apical regions, as is the enzyme itself, and those for glucanase II are in basal regions, implying that enzymes and substrates are normally in separate cellular compartments. Tissue sections stained with aniline blue for beta-glucan show enhanced fluorescence in cell walls, and most of this can be removed either by hot water or the appropriate purified beta-glucanase. The enzymes are not likely to function directly in promoting nutrition or growth in peas, but they could help, following secretion, to maintain channels for communication and translocation through cell walls.  相似文献   

4.
Exclusion of RNA strands from a purine motif triple helix.   总被引:5,自引:5,他引:0       下载免费PDF全文
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the purine motif (purine.purine.pyrimidine triplets), studies have shown only that RNA cannot bind to duplex DNA. To extend this result, we created a DNA triple helix in the purine motif and systematically replaced one, two, or all three strands with RNA. In dramatic contrast to the general accommodation of RNA strands in the pyrimidine triple helix motif, a stable triplex forms in the purine motif only when all three of the substituent strands are DNA. The lack of triplex formation among any of the other seven possible strand combinations involving RNA suggests that: (i) duplex structures containing RNA cannot be targeted by DNA oligonucleotides in the purine motif; (ii) RNA strands cannot be employed to recognize duplex DNA in the purine motif; and (iii) RNA tertiary structures are likely to contain only isolated base triplets in the purine motif.  相似文献   

5.
DNA endonuclease activities from nuclear proteins of normal human and xeroderma pigmentosum (XP), complementation group A, lymphoblastoid and Cloudman mouse melanoma cells were examined against partially apurinic/apyrimidinic (AP) DNA. Non-histone chromatin-associated and nucleoplasmic proteins, obtained from isolated nuclei, were subfractionated by isoelectric focusing and assayed for DNA endonuclease activity against linear, calf thymus DNA. All of the nine chromatin-associated and three of the nucleoplasmic fractions, which lacked DNA exonuclease activity, were tested for DNA endonuclease activity against both native and partially AP, circular, duplex, supercoiled PM2 DNA. In all three cell lines, four chromatin-associated, but none of the nucleoplasmic fractions, showed increased activity against DNA rendered AP by either heat/acid treatment or by alkylation with methyl methanesulfonate (MMS) followed by heat. One chromatin-associated activity, with pI 9.8, which was not active on native DNA, showed the greatest activity on AP DNA. AP activity was moderately decreased in XP cells and slightly decreased in mouse melanoma cells, as compared with normal cells, in the fraction at pI 9.8. Little or no increased activity was observed in any of the endonucleases from any of the cell lines on MMS alkylated DNA.  相似文献   

6.
Rep protein and helicase IV, two DNA-dependent adenosine 5'-triphosphatases with helicase activity, have been purified from Escherichia coli and characterized. Both enzymes exhibit a distributive interaction with single-stranded DNA as DNA-dependent ATPases in a reaction that is relatively resistant to increasing NaCl concentration and sensitive to the addition of E. coli single-stranded DNA binding protein (SSB). The helicase reaction catalyzed by each protein has been characterized using a direct unwinding assay and partial duplex DNA substrates. Both Rep protein and helicase IV catalyzed the unwinding of a duplex region 71 bp in length. However, unwinding of a 119-bp or 343-bp duplex region was substantially reduced compared to unwinding of the 71-bp substrate. At each concentration of protein examined, the number of base pairs unwound was greatest using the 71-bp substrate, intermediate with the 119-bp substrate and lowest using the 343-bp substrate. The addition of E. coli SSB did not increase the fraction of the 343-nucleotide fragment unwound by Rep protein. However, the addition of SSB did stimulate the unwinding reaction catalyzed by helicase IV approximately twofold. In addition, ionic strength conditions which stabilize duplex DNA (i.e. addition of MgCl2 or NaCl), markedly inhibited the helicase reaction catalyzed by either Rep protein or helicase IV while having little effect on the ATPase reaction. Thus, these two enzymes appear to share a common biochemical mechanism for unwinding duplex DNA which can be described as limited unwinding of duplex DNA. Taken together these data suggest that, in vitro, and in the absence of additional proteins, neither Rep protein nor helicase IV catalyzes a processive unwinding reaction.  相似文献   

7.
DEAD-box proteins unwind duplexes by local strand separation   总被引:4,自引:0,他引:4  
DEAD-box proteins catalyze ATP-driven, local structural changes in RNA or RNA-protein complexes (RNP) during which only few RNA base pairs are separated. It is unclear how duplex unwinding by DEAD-box proteins differs from unwinding by canonical helicases, which can separate many base pairs by directional and processive translocation on the nucleic acid, starting from a helical end. Here, we show that two different DEAD-box proteins, Ded1p and Mss116p, can unwind RNA duplexes from internal as well as terminal helical regions and act on RNA segments as small as two nucleotides flanked by DNA. The data indicate that duplex unwinding by DEAD-box proteins is based on local destabilization of RNA helical regions. No directional movement of the enzymes through the duplex is involved. We propose a three-step mechanism in which DEAD-box proteins unwind duplexes as "local strand separators." This unwinding mode is well-suited for local structural changes in complex RNA or RNP assemblies.  相似文献   

8.
9.
Bizebard T  Ferlenghi I  Iost I  Dreyfus M 《Biochemistry》2004,43(24):7857-7866
DEAD-box proteins participate in various aspects of RNA metabolism in all organisms. These RNA-dependent ATPases are usually regarded as double-stranded RNA unwinding enzymes, though in vitro this activity has only been demonstrated for a subset of them. Given their high biological specificity, their equivocal unwinding activity may reflect the noncognate character of the substrates used in vitro. Here, we pinpoint other reasons for this elusiveness. We have compared the ATPase and helicase activities of three E. coli DEAD-box proteins, CsdA, RhlE and SrmB. Whereas the ATPase activity of all proteins is stimulated (albeit to various degree) by long RNAs, only RhlE is stimulated by short oligoribonucleotides. Consistently, all three proteins can unwind RNA duplexes with long single-stranded extensions, but only RhlE is effective when extensions are short or absent. Another critical constraint concerns the length of the duplex region: in the case of RhlE, the ratio (duplex unwound)/(ATP hydrolyzed) drops 1000-fold upon going from 11 to 14 base pairs, indicating a low processivity. Remarkably, allowing for these constraints, all three proteins can unwind substrates with either 5' or 3' extensions (or no extension in the case of RhlE). This behavior, which contrasts with that of well studied SF1 DNA helicases, is discussed in the light of available structural and biochemical data.  相似文献   

10.
Homing endonucleases are enzymes that catalyze DNA sequence specific double-strand breaks and can significantly stimulate homologous recombination at these breaks. These enzymes have great potential for applications such as gene correction in gene therapy or gene alteration in systems biology and metabolic engineering. However, homing endonucleases have a limited natural repertoire of target sequences, which severely hamper their applications. Here we report the development of a highly sensitive selection method for the directed evolution of homing endonucleases that couples enzymatic DNA cleavage with the survival of host cells. Using I-SceI as a model homing endonuclease, we have demonstrated that cells with wild-type I-SceI showed a high cell survival rate of 80–100% in the presence of the original I-SceI recognition site, whereas cells without I-SceI showed a survival rate <0.003%. This system should also be readily applicable for directed evolution of other DNA cleavage enzymes.  相似文献   

11.
The effects of ions (i.e. Na+, Mg2+ and polyamines including spermidine and spermine) on the stability of various DNA oligonucleotides in solution were studied. These synthetic DNA molecules contained sequences that mimic various cellular DNA structures, such as duplexes, bulged loops, hairpins and/or mismatched base pairs. Melting temperature curves obtained from the ultraviolet spectroscopic experiments indicated that the effectiveness of the stabilization of cations on the duplex formation follows the order of spermine > spermidine > Mg2+ > Na+ > Tris–HCl buffer alone at pH 7.3. Circular dichroism spectra showed that salts and polyamines did not change the secondary structures of those DNA molecules under study. Surface plasmon resonance (SPR) observations suggested that the rates of duplex formation are independent of the kind of cations used or the structure of the duplexes. However, the rate constants of DNA duplex dissociation decrease in the same order when those cations are involved. The enhancement of the duplex stability by polyamines, especially spermine, can compensate for the instability caused by abnormal structures (e.g. bulged loops, hairpins or mismatches). The effects can be so great as to make the abnormal DNAs as stable as the perfect duplex, both kinetically and thermodynamically. Our results may suggest that the interconversion of various DNA structures can be accomplished readily in the presence of polyamine. This may be relevant in understanding the role of DNA polymorphism in cells.  相似文献   

12.
13.
We have developed a new helicase assay that overcomes many limitations of other assays used to measure this activity. This continuous, kinetic assay is based on the displacement of fluorescent dyes from dsDNA upon DNA unwinding. These ligands exhibit significant fluorescence enhancement when bound to duplex nucleic acids and serve as the reporter molecules of DNA unwinding. We evaluated the potential of several dyes [acridine orange, ethidium bromide, ethidium homodimer, bis-benzimide (DAPI), Hoechst 33258 and thiazole orange] to function as suitable reporter molecules and demonstrate that the latter three dyes can be used to monitor the helicase activity of Escherichia coli RecBCD enzyme. Both the binding stoichiometry of RecBCD enzyme for the ends of duplex DNA and the apparent rate of unwinding are not significantly perturbed by two of these dyes. The effects of temperature and salt concentration on the rate of unwinding were also examined. We propose that this dye displacement assay can be readily adapted for use with other DNA helicases, with RNA helicases, and with other enzymes that act on nucleic acids.  相似文献   

14.
Defined DNA substrates containing discrete abasic sites or paired abasic sites set 1, 3, 5 and 7 bases apart on opposite strands were constructed to examine the reactivity of S1, mung bean and P1 nucleases towards abasic sites. None of the enzymes acted on the substrate containing discrete abasic sites. Under conditions where little or no non-specific DNA degradation was observed, all three nucleases were able to generate double-strand breaks when the bistranded abasic sites were 1 and 3 base pairs apart. However, when the abasic sites were further apart, the enzymes again failed to cleave the DNA. These results indicate that single abasic sites do not cause sufficient denaturation of the DNA to allow incision by these single-strand specific endonucleases. The reactivity of these enzymes was also investigated on DNA substrates that were nicked by DNasel or more site-specifically by endonuclease III incision at the discrete abasic sites. The three nucleases readily induced a strand break opposite such nicks.  相似文献   

15.
Chemical basis of inflammation-induced carcinogenesis   总被引:11,自引:0,他引:11  
Chronic inflammation induced by biological, chemical, and physical factors has been associated with increased risk of human cancer at various sites. Inflammation activates a variety of inflammatory cells, which induce and activate several oxidant-generating enzymes such as NADPH oxidase, inducible nitric oxide synthase, myeloperoxidase, and eosinophil peroxidase. These enzymes produce high concentrations of diverse free radicals and oxidants including superoxide anion, nitric oxide, nitroxyl, nitrogen dioxide, hydrogen peroxide, hypochlorous acid, and hypobromous acid, which react with each other to generate other more potent reactive oxygen and nitrogen species such as peroxynitrite. These species can damage DNA, RNA, lipids, and proteins by nitration, oxidation, chlorination, and bromination reactions, leading to increased mutations and altered functions of enzymes and proteins (e.g., activation of oncogene products and/or inhibition of tumor-suppressor proteins) and thus contributing to the multistage carcinogenesis process. Appropriate treatment of inflammation should be explored further for chemoprevention of human cancers.  相似文献   

16.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

17.
Conversion of the viral DNA of phage G4 to the duplex form provided an opportunity to isolate and determine the function of the dnaG protein, the product of a gene known to be essential for replication of the Escherichia coli chromosome. This stage of G4 DNA replication requires action of three proteins: the E. coli DNA-binding protein, the dnaG protein, and the DNA polymerase III holoenzyme. The dnaG protein has been purified approximately 25,000-fold to near-homogeneity. The native protein contains a single polypeptide of 60,000 daltons. It has been assayed for its activity on G4 DNA in three ways: (a) RNA synthesis, (b) complementation for replication of an extract of a temperature-sensitive dnaG mutant, and (c) priming of DNA replication by DNA polymerase III holoenzyme. The dnaG protein is highly specific for G4 DNA and synthesizes a unique 29-residue RNA primer to be described in the suceeding paper. Other single-stranded and duplex DNA templates are inactive. RNA primer synthesis by the dnaG protein has an apparent Km for ribonucleoside triphosphates near 10 micrometer, and a narrow optimum for Mg2+. The sharp specificity of the dnaG protein in choice of template and the utilization of either deoxyribonucleotides or ribonucleotides to produce a hybrid piece only a few residues long (as described in a succeeding paper) suggests that the dnaG protein previously named RNA polymerase by renamed primase.  相似文献   

18.
19.
Restriction endonucleases HindII and TaqI, but not SalI, were found to efficiently cleave synthetic hexadecanucleotide duplexes which contained either an A/C or a G/T mismatch within their respective restriction sites. Double-stranded M13 DNAs with identical mismatches were also cleaved under the assay conditions. These results suggest that the distortion of the DNA duplex, caused by these purine/pyrimidine mismatches is not sufficiently large so as to interfere with the recognition and the subsequent cleavage of the DNA by these two enzymes. HindII and SalI, but not TaqI, were furthermore shown to hydrolyze the two strands of the duplex with different rates. The differences between the mode of recognition of their respective restriction sites by these three enzymes are discussed.  相似文献   

20.
Single crystal x-ray diffraction methods have been used to characterize numerous oligonucleotide structures, providing valuable information on the fine structure of DNA, oligonucleotide hydration, interactions with small molecule ligands and proteins. There has been a particular focus on nonstandard base associations and a number of groups have sought to characterize different non-Watson-Crick base pairs to further the understanding of their influence on the structure of duplex DNA and RNA, and to investigate which structural features might be utilized by enzymes in recognition and repair of these errors in DNA. Bases that have been chemically damaged by mutagenic or carcinogenic agents have distinctive modified hydrogen-bonding patterns and these have been investigated. The structure determination of a series of nonduplex DNA structures including examples of a triplex, quadruplexes, and a novel DNA loop have recently been published. In this article we survey the structures of a series of non-Watson-Crick base associations in duplex DNA and RNA. We show how nonstandard base pairs, base triads, and tetrads play an important role in stabilizing nonduplex structures. © 1997 John Wiley & Sons, Inc. Biopoly 44: 91–103, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号