首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection. Despite this, numerous type III R-M systems in bacterial pathogens contain repetitive DNA motifs that suggest the potential for phase variation. Several roles have been proposed for phase variable R-M systems based on DNA restriction function. However, there is now evidence in several important human pathogens, including Haemophilus influenzae, Neisseria meningitidis and Neisseria gonorrhoeae, that these systems are 'phasevarions' (phase variable regulons) controlling expression of multiple genes via a novel epigenetic mechanism.  相似文献   

2.
EcoR124 and EcoDXXI are allelic type I restriction-modification (R-M) systems whose specificity genes consist of common structural elements: two variable regions are separated by a constant, homologous region containing a number of repetitive sequence elements. In vitro recombination of variable and constant elements has led to fully active, hybrid R-M systems exhibiting new and predictable target site specificities. Methylation of synthetic DNA sequences with purified, hybrid modification methylases was used to confirm the proposed recognition sequences. The results clearly demonstrate the correlation between protein domains and target site specificity. Our data suggest that a bacterial population may switch the recognition sequences of its type I R-M system by single recombination events and thus is able to maintain a prokaryotic analogue of the immune system of variable specificity.  相似文献   

3.
Phase variable restriction-modification (R-M) systems are widespread in Eubacteria. Haemophilus influenzae encodes a phase variable homolog of Type III R-M systems. Sequence analysis of this system in 22 non-typeable H.influenzae isolates revealed a hypervariable region in the central portion of the mod gene whereas the res gene was conserved. Maximum likelihood (ML) analysis indicated that most sites outside this hypervariable region experienced strong negative selection but evidence of positive selection for a few sites in adjacent regions. A phylogenetic analysis of 61 Type III mod genes revealed clustering of these H.influenzae mod alleles with mod genes from pathogenic Neisseriae and, based on sequence analysis, horizontal transfer of the mod–res complex between these species. Neisserial mod alleles also contained a hypervariable region and all mod alleles exhibited variability in the repeat tract. We propose that this hypervariable region encodes the target recognition domain (TRD) of the Mod protein and that variability results in alterations to the recognition sequence of this R-M system. We argue that the high allelic diversity and phase variable nature of this R-M system have arisen due to selective pressures exerted by diversity in bacteriophage populations but also have implications for other fitness attributes of these bacterial species.  相似文献   

4.
Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon—‘phasevarion’. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5′-CGAAT-3′. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra- and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R-M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function.  相似文献   

5.
Most bacteria encode proteins for defence against infection by bacteriophages. The mechanisms that bring about phage defence are extremely diverse, suggesting frequent independent evolution of novel processes. Phage defence determinants are often plasmid or phage-encoded and many that are chromosomal show evidence of lateral transfer. Recent studies on restriction-modification (R-M) systems show that these genes are amongst the most rapidly evolving. Some bacteria have contingency genes that encode alternative target specificity determinants for Type I or Type III R-M systems, thus expanding the range of phages against which the host population is immune. The most counter-intuitive observation, however, is the prevalence of phase variation in many restriction systems, but recent arguments suggest that switching off expression of R-M systems can aid phage defence.  相似文献   

6.
7.
8.
Using transposon shuttle mutagenesis, we identified six Helicobacter pylori mutants from the NTUH-C1 strain that exhibited decreased adherence and cell elongation. Inverse polymerase chain reaction and DNA sequencing revealed that the same locus was interrupted in these six mutants. Nucleotide and amino acid sequences showed no homologies with H. pylori 26695 and J99 strains. This novel open reading frame contained 1617 base pairs. The amino acid sequence shared 24% identity with a putative nicking enzyme in Bacillus halodurans and 23 and 20% identity with type IIS restriction endonucleases PleI and MlyI, respectively. The purified protein, HpyC1I, showed endonuclease activity with the recognition and cleavage site 5'-CCATC(4/5)-3'. Two open reading frames were located upstream of the gene encoding HpyC1I. Together, HpyC1I and these two putative methyltransferases (M1.HpyC1I and M2.HpyC1I) function as a restriction-modification (R-M) system. The HpyC1I R-M genes were found in 9 of the 15 H. pylori strains tested. When compared with the full genome, significantly lower G + C content of HpyC1I R-M genes implied that these genes might have been acquired by horizontal gene transfer. Plasmid DNA transformation efficiencies and chromosomal DNA digestion assays demonstrated protection from HpyC1I digestion by the R-M system. In conclusion, we have identified a novel R-M system present in approximately 60% of H. pylori strains. Disruption of this R-M system results in cell elongation and susceptibility to HpyC1I digestion.  相似文献   

9.
10.
11.
12.
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.  相似文献   

13.
Restriction and modification (R-M) systems are generally thought to protect bacteria from invasion by foreign DNA. This paper proposes the existence of an alternative role for the phase-variable R-M systems encoded by the hsd loci of Mycoplasma pulmonis. Populations of M. pulmonis cells that arose during growth in different environments were compared with respect to R-M activity and surface antigen production. When M. pulmonis strain X1048 was propagated in laboratory culture medium, > 95% of colony-forming units (cfu) lacked R-M activity and produced the variable surface protein VsaA. Mycoplasmas isolated from the nose of experimentally infected rats also lacked R-M activity and produced VsaA. In contrast, the cell population of mycoplasmas isolated from the lower respiratory tract of the infected rats was more complex. The most dramatic results were obtained for mycoplasmas isolated from the trachea. At 14 days postinfection, 38% of mycoplasma isolates produced a Vsa protein other than VsaA, and 34% of isolates had active restriction systems. These data suggest that differences in selection pressures in animal tissues affect the surface proteins and the R-M activity of the mycoplasmal cell population. We propose that variations in the production of R-M activity and cell surface proteins are important for the survival of the mycoplasma within the host.  相似文献   

14.
A Type IC Restriction-Modification System in Lactococcus lactis   总被引:1,自引:0,他引:1       下载免费PDF全文
Three genes coding for the endonuclease, methylase, and specificity subunits of a type I restriction-modification (R-M) system in the Lactococcus lactis plasmid pIL2614 have been characterized. Plasmid location, sequence homologies, and inactivation studies indicated that this R-M system is most probably of type IC.  相似文献   

15.
Abstract The tetrameric repeat units 5'-CAAT-3' and 5'-GCAA-3' are associated with phase variable expression of lipopolysaccharide biosynthetic genes in Haemophilus influenzae . Four other tetrameric repeat units have also been reported from H. influenzae strain Rd, 5'-CAAC-3', 5'-GACA-3', 5'-AGCT-3', and 5'-TTTA-3', which are also associated with putative virulence factors. Using oligonucleotide probes corresponding to five tandem copies of each of these tetramers, we have screened three strains of Neisseria meningitidis and one each of Neisseria gonorrhoeae, Neisseria lactamica, Haemophilus parainfluenzae, Bordetella pertussis, Bordetella parapertussis, Bordetella bronchiceptica and Moraxella catarrhalis for the presence of these motifs. We have demonstrated the presence of multiple copies of the 5'-GCAA-3' motif in all the Neisseria strains tested, and also the repeated motif 5'-CAAC-3' in M. catarrhalis . We have further demonstrated by Southern blot analysis that the 5'-CAAC-3' repeats detected in M. catarrhalis are probably associated with the same genes as in H. influenzae , but that the 5'-GCAA-3' motifs in N. meningitidis are not. The use of characterised tetrameric DNA sequences as hybridisation probes may prove useful in the identification of novel phase variable virulence determinants in organisms other than H. influenzae .  相似文献   

16.
Helicobacter pylori, bacteria that colonize the human gastric mucosa, possess a large number of genes for restriction-modification (R-M) systems, and essentially, every strain possesses a unique complement of functional and partial R-M systems. Nearly half of the H.pylori strains studied possess an active type IIs R-M system, HpyII, with the recognition sequence GAAGA. Recombination between direct repeats that flank the R-M cassette allows for its deletion whereas strains lacking hpyIIRM can acquire this cassette through natural transformation. We asked whether strains lacking HpyII R-M activity can acquire an active hpyIIRM cassette [containing a 1.4 kb kanamycin resistance (aphA) marker], whether such acquisition is DNase sensitive or resistant and whether restriction barriers limit acquisition of chromosomal DNA. Our results indicate that natural transformation and conjugation-like mechanisms may contribute to the transfer of large (4.8 kb) insertions of chromosomal DNA between H.pylori strains, that inactive or partial R-M systems can be reactivated upon recombination with a functional allele, consistent with their being contingency genes, and that H.pylori R-M diversity limits acquisition of chromosomal DNA fragments of ≥1 kb.  相似文献   

17.
Strains of Neisseria gonorrhoeae possess numerous restriction-modification (R-M) systems. One of these systems, which has been found in all strains tested, encodes the S. NgoVIII specificity (5'TCACC 3') R-M system. We cloned two adjacent methyltransferase genes (dcmH and damH), each encoding proteins whose actions protect DNA from digestion by R.HphI or R.Ngo BI (5'TCACC 3'). The damH gene product is a N 6-methyladenine methyltransferase that recognizes this sequence. We constructed a plasmid containing multiple copies of the S.NgoVIII sequence, grew it in the presence of damH and used the HPLC to demonstrate the presence of N 6-methyladenine in the DNA. A second plasmid, containing overlapping damH and Escherichia coli dam recognition sequences in combination with various restriction digests, was used to identify which adenine in the recognition sequence was modified by damH. The predicted dcmH gene product is homologous to 5-methylcytosine methyltransferases. The products of both the dcmH and damH genes, as well as an open reading frame downstream of the damH gene are highly similar to the Haemophilus parahaemolyticus hphIMC , hphIMA and hphIR gene products, encoding the Hph I Type IIs R-M system. The S.NgoVIII R-M genes are flanked by a 97 bp direct repeat that may be involved in the mobility of this R-M system.  相似文献   

18.
The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.  相似文献   

19.
Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles. 18 distinct modA alleles have been identified in H. influenzae and the pathogenic Neisseria. To determine the origin of DRD variability, the 18 modA DRDs were used to search the available databases for similar sequences. Significant matches were identified between several modA alleles and mod gene from distinct bacterial species, indicating one source of the DRD variability was via horizontal gene transfer. Comparison of DRD sequences revealed significant mosaicism, indicating exchange between the Neisseria and H. influenzae modA alleles. Regions of high inter- and intra-allele similarity indicate that some modA alleles had undergone recombination more frequently than others, generating further diversity. Furthermore, the DRD from some modA alleles, such as modA12, have been transferred en bloc to replace the DRD from different modA alleles.  相似文献   

20.
Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号