共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives 总被引:3,自引:0,他引:3
Roe M Folkes A Ashworth P Brumwell J Chima L Hunjan S Pretswell I Dangerfield W Ryder H Charlton P 《Bioorganic & medicinal chemistry letters》1999,9(4):595-600
We have synthesised and evaluated a series of anthranilamide based modulators of P-glycoprotein. These studies have identified XR9576(2), a potent inhibitor of P-glycoprotein in vitro and in vivo. The general synthesis and the SAR of these compounds are described. 相似文献
2.
Glutathione-related enzymes,glutathione and multidrug resistance 总被引:2,自引:0,他引:2
This review examines the hypothesis that glutathione and its associated enzymes contribute to the overall drug-resistance seen in multidrug resistant cell lines. Reports of 34 cell lines independently selected for resistance to MDR drugs are compared for evidence of consistent changes in activity of glutathione-related enzymes as well as for changes in glutathione content. The role of glutathione S-transferases in MDR is further analyzed by comparing changes in sensitivity to MDR drugs in cell lines selected for resistance to non-MDR drugs that have resulting increases in glutathione S-transferase activity. In addition, results of studies in which genes for glutathione S-transferase isozymes were transfected into drug-sensitive cells are reviewed. The role of the glutathione redox cycle is examined by comparing changes in elements of this cycle in MDR cell lines as well as by analyzing reports of the effects of glutathione depletion on MDR drug sensitivity. Overall, there is no consistent or compelling evidence that glutathione and its associated enzymes augment resistance in multidrug resistant cell lines. 相似文献
3.
W.-F. Fong C. Wang G.-Y. Zhu C.-H. Leung M.-S. Yang H.-Y. Cheung 《Phytomedicine》2007,14(2-3):160-165
Prolonged chemotherapy may lead to the selective proliferation of multidrug resistant (MDR) cancer cells. In MDR HepG2-DR and K562-DR cells that over-expressed P-glycoprotein (Pgp), the extract of the rhizomes of Alisma orientalis (Sam) Juzep. showed a synergistic growth inhibitory effect with cancer drugs that are Pgp substrates including actinomycin D, puromycin, paclitaxel, vinblastine and doxorubicin. At the same toxicity levels the herbal extract was more effective than verapamil, a standard Pgp inhibitor, in enhancing cellular doxorubicin accumulation and preventing the efflux of rhodamin-123 from the MDR cells. The extract restored the effect of vinblastine on the induction of G(2)/M arrest in MDR cells. Our data suggest that A. orientalis may contain components that are effective inhibitors of Pgp. 相似文献
4.
Breast cancer resistance protein (BCRP) is an ATP-binding cassette multidrug transporter that confers resistance to various anticancer drugs like Mitoxantrone. Overexpression of BCRP confers multidrug resistance (MDR) in cancer cells and is a frequent impediment to successful chemotherapy. For stable reversal of BCRP-depending MDR by RNA interference technology, a hU6-RNA gene promoter-driven expression vector encoding anti-BCRP short hairpin RNA (shRNA) molecules was constructed. By treating endogenously and exogenously expresses high levels of BCRP cells with these constructs, expression of the targeted BCRP-encoding mRNA, and transport protein was inhibited completely. Furthermore, the accumulation of mitoxantrone in the anti-BCRP shRNA-treated cells increased. And the sensitivity to mitoxantrone of anti-BCRP shRNA-treated cells is increased 14.6-fold and 2.44-fold respectively compared to their control (P < 0.05). These data indicated that stable shRNA-mediated RNAi could be tremendously effective in reversing BCRP-mediated MDR and showed promises in overcoming MDR by gene therapeutic applications. 相似文献
5.
Rose Hayeshi Farai Chinyanga Shylet Chengedza Stanley Mukanganyama 《Journal of enzyme inhibition and medicinal chemistry》2013,28(5):581-587
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 μM), GST P1-1 by sulphinpyrazone (IC50 = 66 μM), GST A1-1 by sulphasalazine, and camptothecin (34 and 74 μM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 μM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 μM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein. 相似文献
6.
Inhibition of human glutathione transferases by multidrug resistance chemomodulators in vitro 总被引:2,自引:0,他引:2
Hayeshi R Chinyanga F Chengedza S Mukanganyama S 《Journal of enzyme inhibition and medicinal chemistry》2006,21(5):581-587
Reversal of the drug-resistance phenotype in cancer cells usually involves the use of a chemomodulator that inhibits the function of a resistance-related protein. The aim of this study was to investigate the effects of MDR chemomodulators on human recombinant glutathione S-transferase (GSTs) activity. IC50 values for 15 MDR chemomodulators were determined using 1-chloro-dinitrobenzene (CDNB), cumene hydroproxide (CuOOH) and anticancer drugs as substrates. GSTs A1, P1 and M1 were inhibited by O6-benzylguanine (IC50s around 30 microM), GST P1-1 by sulphinpyrazone (IC50 = 66 microM), GST Al-1 by sulphasalazine, and camptothecin (34 and 74 microM respectively), and GST M1-1 by sulphasalazine, camptothecin and indomethacin (0.3, 29 and 30 microM respectively) using CDNB as a substrate. When ethacrynic acid (for GST P1-1), CuOOH (for A1-1) and 1,3-bis (2-chloroethyl)-1-nitrosourea (for GST M1-1) were used as substrates, these compounds did not significantly inhibit the GST isoforms. However, progesterone was a potent inhibitor of GST P1-1 (IC50 = 1.4 microM) with ethacrynic acid as substrate. These results suggest that the target of chemomodulators in vivo could be a specific resistance-related protein. 相似文献
7.
M. O. Emel’yanov Yu. A. Kim A. F. Korystova L. N. Kublik V. V. Shaposhnikova Yu. N. Korystov 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2010,4(2):212-219
The effect of a short-time (1 h) oxidative stress on multidrug resistance (MDR) of murine leukemic P388VR cells has been investigated. We studied the production of reactive oxygen species (ROS) in cells depending on the composition of medium and the concentration of cells and hydrogen peroxide, as well as the effect of hydrogen peroxide on MDR of cells. MDR was determined from the transport of calcein acetoxymethyl ester out of the cells and from a change in cell sensitivity to vincristine. The amount of ROS arising in cells was determined using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA). It was shown that the rate of ROS formation in cells decreases after the addition of serum to the medium and with an increase of the cell number. By the action of hydrogen peroxide, the amount of ROS increases directly with its concentration. Oxidative stress generated by 30–300 μM hydrogen peroxide decreases the MDR of the cells. The effect of hydrogen peroxide increases with the treatment duration and concentration of hydrogen peroxide. MDR determined by the criterion of the efflux of calcein ester from cells is completely suppressed after 1-h exposure to 300 μM hydrogen peroxide. At a concentration of hydrogen peroxide of 60 μM and treatment duration of 1 h, the sensitivity of P388VR cells to vincristine increases to reach the sensitivity of the wild-type P388 cells. Rapid (about 1 h) suppression of MDR is caused by inhibition of the activity of transport proteins. MDR decrease induced by oxidative stress can be used in therapy of tumors resistant to anticancer drugs. 相似文献
8.
Qiying Shen 《Journal of liposome research》2017,27(4):293-301
Multidrug resistance (MDR) is a major obstacle to successful clinical cancer chemotherapy. Currently, there is still unsatisfactory demand for innovative strategies as well as effective and safe reversing agent to overcome MDR. In this study, we developed a novel nanoformulation, in which doxorubicin hydrochloride (DOX) and quinine hydrochloride (QN) were simultaneously loaded into liposomes by a pH-gradient method for overcoming MDR and enhancing cytotoxicity in a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR). The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and QN co-loaded liposomes (DQLs). The DQL showed uniform size distribution and high encapsulation efficiency (over 90%) for both the drugs. Furthermore, DQLs significantly displayed high intracellular accumulation and potential of MDR reversal capability in MCF-7/ADR cells through the cooperation of DOX with QN, in which QN played the role as a MDR reversing agent. The IC50 of DQL0.5:1 with the DOX/QN/SPC weight ratio of 0.5:1:50 was 1.80?±?0.03?μg/mL, which was 14.23 times lower than that of free DOX in MCF-7/ADR cells. And the apoptotic percentage induced by DQL0.5:1 was also increased to 62.2%. These findings suggest that DQLs have great potential for effective treatment of MDR cancer. 相似文献
9.
Norman BH Dantzig AH Kroin JS Law KL Tabas LB Shepard RL Palkowitz AD Hauser KL Winter MA Sluka JP Starling JJ 《Bioorganic & medicinal chemistry letters》1999,9(23):3381-3386
The benzothiophene LY329146 reverses the drug resistance phenotype in multidrug resistance protein (MRP1)-overexpressing cells when dosed in combination with MRP1-associated oncolytics doxorubicin and vincristine. Additionally, LY329146 inhibited MRP1-mediated uptake of the MRP1 substrate LTC4 into membrane vesicles prepared from MRP1-overexpressing cells. 相似文献
10.
Choi CH Sun KH An CS Yoo JC Hahm KS Lee IH Sohng JK Kim YC 《Biochemical and biophysical research communications》2002,292(4):832-840
Vif, one of the six accessory genes expressed by HIV-1, is essential for the productive infection of natural target cells. Previously we suggested that Vif acts as a regulator of the viral protease (PR): It prevents the autoprocessing of Gag and Gag-Pol precursors until virus assembly, and it may control the PR activity in the preintegration complex at the early stage of infection. It was demonstrated before that Vif, and specifically the 98 amino acid stretch residing at the N'-terminal part of Vif (N'-Vif), inhibits both the autoprocessing of truncated Gag-Pol polyproteins in bacterial cells and the hydrolysis of synthetic peptides by PR in cell-free systems. Linear synthetic peptides derived from N'-Vif specifically inhibit and bind HIV-1 PR in vitro, and arrest virus production in tissue culture. Peptide mapping of N'-Vif revealed that Vif88-98 is the most potent PR inhibitor. Here we report that this peptide inhibits both HIV-1 and HIV-2, but not ASLV proteases in vitro. Vif88-98 retains its inhibitory effect against drug-resistant HIV-1 PR variants, isolated from patients undergoing long-term treatment with anti-PR drugs. Variants of HIV protease bearing the mutation G48V are resistant to inhibition by this Vif-derived peptide, as shown by in vitro assays. In agreement with the in vitro experiments, Vif88-98 has no effect on the production of infectious particles in cells infected with a G48V mutated virus. 相似文献
11.
Kamiya D Uchihata Y Ichikawa E Kato K Umezawa K 《Bioorganic & medicinal chemistry letters》2005,15(4):1111-1114
Suppression of resistance to anticancer drugs by COTC of glyoxalase I (GloI) inhibitor targeting intracellular glutathione (GSH) and GloI was studied. Depletion of the cellular GSH content and inhibition of GloI by COTC increased chemotherapy-mediated apoptosis in apoptosis-resistant pancreatic adenocarcinoma AsPC-1 cells. 相似文献
12.
《Peptides》2013
Multidrug resistance (MDR) of cancer cells to a wide spectrum of anticancer drugs is a major obstacle to successful chemotherapy. It is usually mediated by the overexpression of one of the three major ABC transporters actively pumping cytotoxic drugs out of the cells. There has been great interest in the search for inhibitors toward these transporters with an aim to circumvent resistance. This is usually achieved by screening from natural product library and the subsequent structural modifications. This study reported the reversal of ABCG2-mediated MDR in drug-selected resistant cancer cell lines by a class of host defense antimicrobial peptides, the human cathelicidin LL37 and its fragments. The effective human cathelicidin peptides (LL17-32 and LL13-37) were found to increase the accumulation of mitoxantrone in cancer cell lines with ABCG2 overexpression, thereby circumventing resistance to mitoxantrone. At the effective concentrations of the cathelicidin peptides, cell proliferation of the parental cells without elevated ABCG2 expression was not affected. Result from drug efflux and ATPase assays suggested that both LL17-32 and LL13-37 interact with ABCG2 and inhibit its transport activity in an uncompetitive manner. The peptides were also found to downregulate ABCG2 protein expression in the resistant cells, probably through a lysosomal degradation pathway. Our data suggest that the human cathelicidin may be further developed for sensitizing resistant cancer cells to chemotherapy. 相似文献
13.
Reversal of multidrug resistance by calcium channel blocker SR33557 without photoaffinity labeling of P-glycoprotein 总被引:5,自引:0,他引:5
J P Jaffrézou J M Herbert T Levade M N Gau P Chatelain G Laurent 《The Journal of biological chemistry》1991,266(29):19858-19864
The altered pharmacology of drugs in multidrug-resistant cells (decreased accumulation and retention) appears to be mediated by a high molecular weight integral membrane protein, called P-glycogprotein (P-gp). Agents known to reverse this pleiotropic drug resistance (chemosensitizers) have been shown to interact with P-gp; and as such, the inhibition of photoaffinity labeling by P-gp probes (such as [3H]azidopine) has been proposed as a basis for mass screening of chemosensitizers. In this study, we provide direct evidence that a novel calcium channel blocker (SR33557), which was 4.5 times more potent in sensitizing P388/ADR cells to doxorubicin as compared to verapamil (while inducing a similar increase in uptake and decrease in efflux of [14C]doxorubicin, did not compete for the [3H]azidopine-binding site on P-gp, whereas verapamil did. Moreover, SR33557, which is inherently photoactivable, did not photolabel P-gp, but a 65-kDa protein did appear to be an acceptor; and this binding was displaced by diltiazem and nifedipine, but not by verapamil. Finally, the implication for the participation of a sphingomyelin/sphingosine cycle (as a potential lipid second messenger system) in the chemosensitization of P388/ADR cells was investigated. 30 microM SR33557 induced a 72% inhibition in acid lysosomal sphingomyelinase activity, a 5-fold increase in sphingosine levels, and a 75% inhibition in intracellular protein kinase C activity. Although no direct link is established between these observations and P-gp activity, further studies on a possible sphingosine-mediated regulation of P-gp may yield information on the involvement of this second messenger system in the action of SR33557. 相似文献
14.
《Bioorganic & medicinal chemistry》2016,24(21):5061-5067
The ability as P-glycoprotein (P-gp, ABCB1) modulators of thirty (1–30) triterpenoids of the cucurbitane-type was evaluated on human L5178 mouse T-lymphoma cell line transfected with the human MDR1 gene, through the rhodamine-123 exclusion assay. Compounds (1–26, and 29, 30) were previously obtained from the African medicinal plant Momordica balsamina, through both isolation (1–15) and molecular derivatization (16–26 and 29, 30). Compounds 27–28 are two new karavilagenin C (34) derivatives having succinic acid moieties. Apart from 4, 6, 8, 10 and 11, most of the isolated compounds (1–15) displayed strong MDR reversing activity in a dose-dependent mode, exhibiting a many-fold activity when compared with verapamil, used as positive control. At the lowest concentration tested, compounds 2 and 7 were the most active. However, a decrease of activity was found for the acyl derivatives (16–30). In a chemosensitivity assay, the MDR reversing activity of some of the most active compounds (1–3, 5, 7, 12–15) was further assessed on the same cell model. All the tested compounds, excepting 15, corroborated the results of the transport assay, revealing to synergistically interact with doxorubicin. Structure–activity relationship studies, taking into account previous results, showed that different substitution patterns, at both the tetracyclic nucleus and the side chain, play important role in ABCB1 reversal activity. An optimal lipophilicity was also recognized. 相似文献
15.
Xuelian Zheng Daoxia Li Chen Zhao Qiong Wang Hao Song Yong Qin Linchuan Liao Lin Zhang Yong Lin Xia Wang 《Apoptosis : an international journal on programmed cell death》2014,19(8):1293-1300
Because multidrug resistance (MDR) is a serious impediment to the use of chemotherapy in treating cancer patients, great efforts have been made to search for effective MDR-reversing agents. We have developed a brand new synthetic ardeemin derivative, 5-N-formylardeemin, and investigated the activity of which in reversing MDR in MDR cancer cell lines derived from human breast cancer (MCF-7-R) or lung cancer (A549-R). 5-N-formylardeemin strongly enhanced the anti-cancer efficacy of doxorubicin, vincristine through potentiation of apoptosis in both MCF-7-R and A549-R at relatively noncytotoxic concentrations in vitro. Mechanistic studies showed that 5-N-formylardeemin inhibited the expression of MDR-1 (P-gp) and increased the intracellular accumulation of cytotoxic drugs in the MDR cells, suggesting that 5-N-formylardeemin reverses MDR activities through inhibiting MDR-1 expression. Interestingly, 5-N-formylardeemin also sensitized the parent wild-type cancer cells toward these chemotherapeutic agents to various extents. Importantly, in vivo studies demonstrated that 5-N-formylardeemin significantly improved the therapeutic effects of doxorubicin in nude mice bearing A549-R xenografts, which was associated with reduced expression of MDR-1 protein level and increased apoptosis in tumor tissues. These results underscore 5-N-formylardeemin as a potential sensitizer for chemotherapy against multidrug resistant cancers. 相似文献
16.
Phytochemistry Reviews - Pathogens that express resistance to multiple drugs are becoming the norm, complicating treatment and increasing human morbidity. Acylsugars or resin glycosides from the... 相似文献
17.
Antonella Pannocchia Silvia Revelli Giacomo Tamponi Angelica Giorgianni Roberta Todde Amalia Bosia Dario Ghigo 《Cell biochemistry and function》1996,14(1):11-18
Although multidrug resistance (mdr) may arise through a variety of mechanisms, the most widely studied and accepted form is associated with an increased concentration of P-glycoprotein (P-gp), a 170kd protein found in the membrane fraction of a number of mammalian cells. Since mdr seems to be related to the ability of resistant cells to extrude drugs and the circumvention of mdr is supposed to be due to the restored ability to accumulate drugs, membrane has been regarded as the crucial site for such a regulation and an important role for membrane ion exchangers has been suggested. The aim of this work was to elucidate whether the Na+/H+ antiporter is involved in the mechanism of regulation and circumvention of mdr and if 5-(N-ethyl-N-isopropyl) amiloride (EIPA), a selective inhibitor of the Na+/H+ exchanger, can modulate the functional expression of the mdr phenotype. The effect of EIPA on doxorubicin (DX) resistant cells (LoVo/DX) obtained from a human colon adenocarcinoma cell line (LoVo) was studied. EIPA at concentrations ranging from 10 to 50 μM was able to increase the antibiotic cytotoxicity in the resistant Lovo/DX cells. The reversal of DX resistance paralleled an increase of the ability of the cells to accumulate the drug. Both drug loading and sensitivity to the inhibitory effect of DX on cell proliferation were restored by EIPA in a dose-dependent way. These results suggest a new mechanism of mdr reversal and indicate that amiloride and its derivatives may be useful in reversing DX resistance and in enhancing the clinical effectiveness of chemotherapeutics. 相似文献
18.
19.
Reversal of MRP-mediated multidrug resistance in human lung cancer cells by the antiprogestatin drug RU486. 总被引:16,自引:0,他引:16
L Payen L Delugin A Courtois Y Trinquart A Guillouzo O Fardel 《Biochemical and biophysical research communications》1999,258(3):513-518
Multidrug resistance-associated protein (MRP) and P-glycoprotein (P-gp) are drug efflux pumps conferring multidrug resistance to tumor cells. RU486, an antiprogestatin drug known to inhibit P-gp function, was examined for its effect on MRP activity in MRP-overexpressing lung tumor GLC4/Sb30 cells. In such cells, the antihormone compound was found to increase intracellular accumulation of calcein, a fluorescent compound transported by MRP, in a dose-dependent manner, through inhibition of cellular export of the dye; in contrast, it did not alter calcein levels in parental GLC4 cells. RU486, when used at 10 microM, a concentration close to plasma concentrations achievable in humans, strongly enhanced the sensitivity of GLC4/Sb30 cells towards two known cytotoxic substrates of MRP, the anticancer drug vincristine and the heavy metal salt potassium antimonyl tartrate. Vincristine accumulation levels were moreover up-regulated in RU486-treated GLC4/Sb30 cells. In addition, such cells were demonstrated to display reduced cellular levels of glutathione which is required for MRP-mediated transport of some anticancer drugs. These findings therefore demonstrate that RU486 can down-modulate MRP-mediated drug resistance, in addition to that linked to P-gp, through inhibition of MRP function. 相似文献
20.
Reversal of multidrug resistance of vincristine-resistant gastric adenocarcinoma cells through up-regulation of DARPP-32 总被引:1,自引:0,他引:1
Hong L Wang J Han Y Zhao Y Gao J Wang J Han Y Zhang X Yan L Zhou X Qiao T Chen Z Fan D 《Cell biology international》2007,31(9):1010-1015
Here we investigated the roles of DARPP-32 in multidrug resistance (MDR) of gastric cancer cells and the possible underlying mechanisms. We constructed the eukaryotic expression vector of DARPP-32 and transfected it into human vincristine-resistant gastric adenocarcinoma cell line SGC7901/VCR. Up-regulation of DARPP-32 could significantly enhance the sensitivity of SGC7901/VCR cells towards vincristine, adriamycin, 5-fluorouracil and cisplatin, and could decrease the capacity of cells to efflux adriamycin. What's more, the results of subrenal capsule assay confirmed that DARPP-32 might play a certain role in MDR of gastric cancer. DARPP-32 could significantly down-regulate the expression of P-gp and zinc ribbon domain-containing 1 (ZNRD1), but not alter the expression of multidrug resistance-associated protein (MRP) or the glutathione S-transferase (GST). DARPP-32 could also significantly decrease the anti-apoptotic activity of SGC7901/VCR cells. Further study of the biological functions of DARPP-32 might be helpful for understanding the mechanisms of MDR in gastric cancer. 相似文献