首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two experiments on the nymphal predation of Podisus maculiventris were conducted using Spodoptera litura larvae as prey. First experiment: The predator nymphs divided into three groups were reared individually from second instar to adult in a small vessel. Each nymph in the groups 1, 2 and 3 was allowed to attack the serially growing larvae (these were supplied at the rate of one per day) from 3-, 5- and 7-day old after hatching, respectively. The first prey used for the group 1 was so small that it was not only insufficient to satiate the predator but also was difficult to be searched out. But these disadvantages were soon recuperated due to the rapid growth of the prey and all nymphs could survive to adults. The survival rate of third and fourth instar nymphs in the group 3 was severely affected by vigorous counterattack of older prey larvae. Second experiment: The predator nymphs were individually reared either in a small vessel or in a large one at various rates of food supply (the prey larvae of 7-day old were used). The functional response curves obtained for each instar of the predator took a saturation type within a certain range of the prey density. The saturation level specific to each instar was generally higher for the predator reared in the large vessel than in the small one. The functional response of fourth and fifth instar nymphs was accelerated at a high prey density, viz. 16 larvae per vessel. Even at the low rate of food supply, viz. one larva per day per predator, the predator nymphs could survive to adults, but the size of resultant adults were abnormally small.  相似文献   

2.
Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.  相似文献   

3.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

4.
Aseptic larvae of Anopheles stephensi and Toxorhynchites amboinensis were reared on a continuous cell line (RU TAE 12 V) from the mosquito, T. amboinensis, that grew in suspension as multicellular vesicles. Surface-sterilized eggs were hatched in a 24-well plate containing 0.2 ml of Leibovitz's L-15 medium per well and incubated in a humidified atmosphere. Toxorhynchites amboinensis eggs of 36 hr or older were placed singly to assure hatching and avoid cannibalism. Hatching rates were over 80%. All larval instars were maintained in L-15 medium at 28 C with a 12-hr photoperiod. Anopheles stephensi larvae were reared in 25-cm2 tissue culture flasks containing 10 ml of L-15 medium with 30 to 50 first and second instar larvae or 10 third and fourth instar larvae per flask. Toxorhynchites amboinensis larvae remained in the 24-well plate in 1.5 ml of medium through the second instar; third instar larvae were kept in 12-well plates (3 ml of medium per well) and transferred to 25-cm2 flasks (10 ml per flask) when they reached the fourth instar. First and second instar A. stephensi larvae were fed cultured cells once, and third or fourth instar larvae twice a day. Toxorhynchites amboinensis larvae were fed vesicles once during the first 4 days after hatching, and every 1 or 2 days thereafter. Each A. stephensi larva consumed approximately 2 X 10(6) cells, and T. amboinensis larvae 10 times more cells before pupating. Anopheles stephensi pupated after 7 to 8 days and adults emerged during days 9 to 11. Pupation in T. amboinensis began on day 21 after hatching and adults emerged 5 days later. Cell lines isolated from A. stephensi larvae or embryos of the ticks Rhipicephalus sanguineus and Anocentor (Dermacentor) nitens supported only limited growth of A. stephensi larvae. Defibrinated hamster (Mesocricetus auratus) blood, though readily ingested, did not support the growth of A. stephensi whereas larvae reared on blood cells plus T. amboinensis cells showed limited growth.  相似文献   

5.
Cannibalism, which is rather common in ladybirds, has been usually studied at the individual level: benefits of cannibalism for cannibals were estimated. Our study was conducted at the group level: we evaluated the overall effect of interlarval cannibalism on a group of Harmonia axyridis larvae of the fourth instar deprived of food, including both cannibals and their victims. Experiments showed that the probability of pupation in larvae which were kept individually was significantly higher than in larvae kept in groups of five, other conditions being the same. The proportion of samples in which at least one of five individuals pupated among the larvae kept individually was also higher than among those kept in groups suggesting that the eventual benefit of cannibalism was outweighed by the negative impact of aggressive interlarval interactions. The mean and minimum survival time in samples where none of five larvae pupated were longer when larvae were kept individually than when larvae were kept in groups. However, the maximum survival time (the survival time of the last larva in a sample) increased when larvae were kept in groups, which was the only one benefit of cannibalism found in our study. Under natural conditions, the possible adaptive value of this effect is that in the absence of natural prey, longer larval survival time proportionally increases the possibility of finding a new prey patch thereby ensuring survival of the population.  相似文献   

6.
The frequency distribution of the durations of development of 516 larvae of Adalia bipunctata is unimodal, and the fast‐ and slow‐developing larvae can be identified at the beginning of the fourth (=last) instar. To determine the advantages of fast and slow development, the survival, duration of development, growth and number of aphids consumed by fast‐ and slow‐developing fourth instar larvae fed different numbers aphids were recorded. The percentages of fast‐ and slow‐developing fourth instar larvae that survived when fed 0.5, 1 or an excess of aphids per day, surprisingly, did not differ. The slow‐developing larvae of both sexes took longer to complete their development than the fast‐developing larvae when fed 1 or an excess of aphids per day, and although the weights of the fast‐ and slow‐developing fourth instar larvae differed at the beginning of the instar, they did not differ at the end of this instar when fed 1 aphid per day. However, when reared on an excess of aphids per day, the adult weights of the fast‐developing individuals was greater than that of slow‐developing individuals. The average durations for which the larvae in the two groups survived when fed 0.5 aphids/day differed with the larvae of the fast‐developing individuals surviving for 9.8 ± 0.5 days and slow‐developing individuals 17 ± 1.3 days. Assuming that it is the rate of predator biomass increase, which is maximized by evolution, a model of the relationship between the rate of development/growth of a predator and that of its prey indicates that the optimum growth rate of a predator is positively associated with that of its prey. The evolutionary implications of these results are discussed.  相似文献   

7.
Effects of prey density, prey instar, and patch size on the development of the predatory mosquito larva, Toxorhynchites towadensis, were investigated in the laboratory. Survivors of T. towadensis showed different developmental patterns in relation to prey age structure. All predatory larvae in containers with only second instar prey developed into the third instar. However, in several containers with fourth instar prey, mortality of predators was observed. During the third instar, no predatory larva died, but both prey density and prey instar significantly affected the survival of predators during their fourth instar. Large prey size promoted large predator adults, and predatory larvae which grew up in small surface containers responded by developing to large sizes than those in large containers. Larval developmental time of the predators differed in each treatment. During first and second instars, faster predator development was observed in containers with small surface areas and containing young prey individuals. However, when development was enhanced by the presence of old prey individuals, no surface effect was observed. The fastest predator development was observed with prey of mixed instars and high density. This study suggests that a small surface container containing prey of mixed instars and high density is suitable for development of predators.  相似文献   

8.
Vulnerability of larvae of two species of aphidophagous ladybirds, Adalia bipunctata Linnaeus and Harmonia axyridis Pallas, to cannibalism and intraguild predation was assessed in the laboratory. In the first experiment, a first instar of one of the two above species was kept with a fourth instar of the other species in a Petri dish. The number of times each first instar larva was encountered by the fourth instar larva and the fate of the first instar was determined over a period of 10 min. The fourth instar larvae captured and killed all the first instar larvae of their own species at the first encounter. However, when presented with fourth instar larvae of the other species the first instar larvae of A. bipunctata and H. axyridis were encountered 6.4 ± 1.3 ( n  = 10) and 19.4 ± 2.1 ( n  = 10), respectively. In this experiment no first instar larvae of H. axyridis , whereas all those of A. bipunctata , were killed.  相似文献   

9.
The larvae of the pine processionary moth (PPM), Thaumetopoea pityocampa, feed on the needles of pine and cedar. The urticating hairs of older instars pose a threat to human and animal health. Strains of the entomopathogenic fungi, Metarhizium brunneum (V275, ARSEF 4556) and Beauveria bassiana (KTU-24), were assayed against first to fourth instar T. pityocampa using doses ranging from 1?×?105 to 1?×?108 conidia mL?1. The three strains differed slightly in their virulence but caused 100% mortality of all instars at the highest dose. The newly emerged or first instar larvae were extremely susceptible with 100% mortality being achieved 2–4 days post inoculation with V275 at all but the lowest dose. The fourth instar larvae appeared to be less susceptible than earlier instars. There was good horizontal transmission of conidia from treated to un-inoculated larvae. However, mortality was higher in third and fourth instars and where the ratio of inoculated versus untreated larvae was high. This we presume is due to spores being more readily trapped by the urticating hairs found on third and older instar larvae. Injection of the nests offers a simple and environmentally friendly way of controlling the pest with reduced risk to operators.  相似文献   

10.
The effects of azadirachtin on two pests: neonate larvae and newly emerged adults of Ceratitis capitata (Wiedemann) and last instar larvae of Spodoptera exigua (Hubner); and three natural enemies: newly emerged adults of Opius concolor Szepligeti, second instar larvae of Chrysoperla carnea (Stephens), and fifth instar nymphs of Podisus maculiventris (Say) were studied in laboratory. Adult insects were exposed to a non-oil formulation of azadirachtin (Align, emulsifiable concentrate, 3.2% azadirachtin, Sipcam Inagra, Spain) via their drinking water and immature instars were reared in the presence of the insecticide-treated diet. The natural enemies were exposed to at least the maximum field recommended concentration of the insecticide (0.15% v/v). Azadirachtin was highly toxic to neonate larvae of C. capitata and prevented adult emergence at a concentration of 1 mg a.i. l -1 . When adults were fed the insecticide at the maximum recommended concentration, their survival was not affected but egg laying was totally inhibited. Last instar S. exigua larvae were also very susceptible (LC 50 = 7.7 mg a.i. l -1 ) and at a concentration of 10 mg a.i. l -1 fecundity of surviving adults, and egg fertility, were reduced by 72 and 85%, respectively. Effects on O. concolor were large, and significant reductions in longevity, percentage of attacked hosts, and progeny size per female, were recorded. The predator P. maculiventris was much less sensitive to azadirachtin, but slight reductions in survival of emerged adults and of reproductive parameters occurred. The insecticide had no significant effect on C. carnea larvae fed with treated Sitotroga cerealella (Oliver) eggs, probably because of its inability to penetrate inside the egg.  相似文献   

11.
The ability of prey to detect predators and respond accordingly is critical to their survival. The use of chemical cues by animals in predator detection has been widely documented. In many cases, predator recognition is facilitated by the release of alarm cues from conspecific victims. Alarm cues elicit anti‐predator behavior in many species, which can reduce their risk of being attacked. It has been previously demonstrated that adult long‐toed salamanders, Ambystoma macrodactylum, exhibit an alarm response to chemical cues from injured conspecifics. However, whether this response exists in the larval stage of this species and whether it is an innate or a learned condition is unknown. In the current study, we examined the alarm response of naïve (i.e. lab‐reared) larval long‐toed salamanders. We conducted a series of behavioral trials during which we quantified the level of activity and spatial avoidance of hungry and satiated focal larvae to water conditioned by an injured conspecific, a cannibal that had recently been fed a conspecific or a non‐cannibal that was recently fed a diet of Tubifex worms. Focal larvae neither reduced their activity nor spatially avoided the area of the stimulus in either treatment when satiated, and exhibited increased activity towards the cannibal stimulus when hungry. We regard this latter behavior as a feeding response. Together these results suggest that an anti‐predator response to injured conspecifics and to cannibalistic conspecifics is absent in naïve larvae. Previous studies have shown that experienced wild captured salamanders do show a response to cannibalistic conspecifics. Therefore, we conducted an additional experiment examining whether larvae can learn to exhibit anti‐predator behavior in response to cues from cannibalized conspecifics. We exposed larvae to visual, chemical and tactile cues of stimulus animals that were actively foraging on conspecifics (experienced) or a diet of Tubifex (naïve treatment). In subsequent behavioral treatments, experienced larvae significantly reduced their activity compared to naive larvae in response to chemical cues of cannibals that had recently consumed conspecifics. We suggest that this behavior is a response to alarm cues released by consumed conspecifics that may have labeled the cannibal. Furthermore, over time, interactions with cannibals may cause potential prey larvae to learn to avoid cannibals regardless of their recent diet.  相似文献   

12.
Cannibalism by larval damselflies late in larval development on larvae a few instars smaller has been widely documented. I examine here the survival of eggs oviposited near the end of the flight season of adult Enallagma boreale in the presence and absence of potential cannibals, individuals that hatched from eggs earlier in the season, over an extended part of the life-cycle. The role of competition as a modifier of cannibalism was examined by manipulating egg density, environmental productivity, and habitat complexity. Survival in the absence of potential cannibals ranged from 5% to nearly 50% but was only 0–3% in the presence of cannibals. Survival of small larvae was related to manipulations of habitat complexity but not initial density or resources. There were no significant interactions of the presence of large larvae with other experimental treatments on the survival of small larvae. The mean size of small larvae was greater in the presence of cannibals. This may be because the cannibalism treatment reduced the density of small larvae and reduced competition for resources, or that the cannibals preferentially fed on small larvae and only relatively large individuals remained. Fertilization of the habitat or manipulating the initial density of small larvae did not affect mass of small larvae at the end of the experiment, which would be expected if small larvae were affected by competition for resources. Potential cannibals, however, emerged at higher mass when small larvae were present at low density and when productivity of the habitat was increased. This suggests that the negative effect of competition by small larvae outweighs the positive effect of being potential prey for large larvae.  相似文献   

13.
Foraging behavior of a pit-building antlion larva, Myrmeleon boreTjeder was investigated experimentally to elucidate the relation between the feeding level and pit relocation.
  1. In artificial sands constructed in the field the 3rd instar larvae of M. bore rarely changed the positions of their pits, though several antlions had moved actively until they constructed pits. The average feeding rate was 0.3 prey/day/pit, and about 60% of prey captured were ants.
  2. To examine whether or not M. bore larvae concentrate into the area where they can capture more prey, 8 antlions were released into each of 6 boxes filled with sand. I divided the sand surface of each box into two half areas, then gave prey to the pits built in a half area and gave no prey to the pits built in the other half. During the 50-day observation period, nonfed antlions never moved into the area where prey were given.
  3. The 3rd instar larvae were reared separately without food. Even under starved conditions they rarely relocated their pits until dealth. The average duration of survival period was 83.9 days.
  4. The experimental results indicate that M. bore larvae adopt a tactic of sedentary ambushing. These larvae exhibit low movement rates which are independent of prey capture rates.
  相似文献   

14.
Parental care is an important component of social behavior in both vertebrates and invertebrates. Social wasps are a useful system for investigating the interplay between behaviors associated with the feeding of larvae by adults and their role in the evolution and maintenance of sociality. Females of the primitively eusocial wasp genus Polistes perform conspicuous vibratory behaviors closely associated with adult–larva feeding interactions. Prior research strongly indicates that these signals are directed toward the larvae, but their function(s) remain unclear. Existing hypotheses on the function(s) have posited releaser effects on larvae, either stimulating or inhibiting release of larval saliva, a nutrient‐rich glandular secretion attractive to adults. Polistes fuscatus queens perform antennal drumming (AD), a behavior in which they rapidly beat their antennae synchronously on the rims of the nest cells during the feeding of larvae. We used radiolabeled prey to show that adults extract juice from the prey, which they subsequently regurgitate to larvae immediately following each AD burst. We also show that no saliva is imbibed by the queen during the contact. These results are consistent with the inhibition hypothesis on the function of AD, but not the stimulation hypothesis. We further demonstrate that AD is first performed on nests when the oldest larvae reach the third instar, and that the third instar is the first to produce measurable volumes of larval saliva. Removal of third‐, fourth‐, and/or fifth‐instar larvae from single‐foundress, pre‐pupal‐stage colonies did not cause a reduction in the queen’s AD rates compared with controls, suggesting that later‐stage larvae do not maintain AD behavior via an immediate releaser effect. We propose instead that third‐instar larvae, possibly via chemical components of the salivary secretion itself, modulate the physiology of queens so as to indirectly cause the onset and maintenance of AD behavior.  相似文献   

15.
Another look at prey detection by coccinellids   总被引:4,自引:0,他引:4  
Abstract.
  • 1 Adult and fourth instar larvae of Coccinella septempunctata (L.) were tested to see whether or not they could detect prey prior to physical contact.
  • 2 Adult predators found aphid prey and a silver foil dummy significantly faster than an X-mark on the floor of the arena covering the same area.
  • 3 Fourth instar larvae found crushed prey more quickly than the X-mark but were not able to detect whole frozen prey.
  • 4 The distances at which the predators could detect prey were calculated. This distance was found to be about 1.0 cm for the adults and 0.7 cm for the fourth instar larvae.
  相似文献   

16.
Synopsis Sibling cannibalism in pike, Esox lucius, larvae and juveniles living in outdoor rearing ponds was studied using stomach contents analysis. For the two initial densities tested (6 and 18 larvae m–2, equivalent to 12 and 36 larvae m–3), cannibalism was non-existent during the larval period (13 to 35 mm total length) and was observed only during the juvenile stages. Initial density of larvae influenced both the date of first detection of cannibalistic individuals and the rate of development of cannibalism in the population. At initial stocking densities of 18 larvae m–2 (36 larvae m–3), cannibalism was observed from 21 days after the start of exogenous feeding (mean total length: 60 mm) onwards. At a mean total length of 100 mm and for initial stocking densities of 6 and 18 larvae m–2, (12 and 36 larvae m–3), the average proportions of cannibals in the populations of juveniles were 7.8% and 41.3% and the cannibals accounted for 15.5% and 65.9% of the total pike biomass, respectively. In stomachs of cannibals, young pike were the dominant prey in terms of weight. Dry weights of invertebrate-prey were lower in cannibals than in non-cannibals of similar size. Cannibalism among pike juveniles was characterized by the prey being swallowed whole and head first in the vast majority of cases. There was a strong positive correlation between predator and prey size and the mouth size of a cannibal was found to be an important constraint determining maximum victim size. The overall mean ratio of pike prey length to pike cannibal length was 66.2% and the average ratio of prey head depth to predator mouth width amounted to 87.6%. Prey size selection could be demonstrated for several length-groups of cannibals. These results are compared with the characteristics of early cannibalism in other fish species.  相似文献   

17.
During the building of a process-based simulation model for the epidemiology of the multicapsid nucleopolyhedrovirus of S. exigua (SeMNPV) in populations of Spodoptera exigua (Hübner) in greenhouse chrysanthemum, it was found that the effect of host plants had been under-rated. 'Missing links' included (i) the 'natural' background mortality of larvae of S. exigua in practical cropping conditions; (ii) the developmental rate of larvae of S. exigua on plant substrate in a glasshouse as compared to artificial medium in the laboratory; (iii) the validity of the results of dose-mortality and time-mortality bioassays conducted on artificial medium as compared to natural plant substrate; (iv) the distribution of inoculum released from deceased caterpillars over chrysanthemum leaves; and (v) the leaf visit rate of healthy caterpillars (as it affects horizontal transmission). Experiments were carried out to quantify these processes. Developmental rates of S. exigua larvae on greenhouse chrysanthemum were 36% lower than on an artificial diet. The fraction survival during the first, second, third and fourth instar S. exigua larvae in greenhouse chrysanthemum was 0.60, 0.80, 0.88 and 0.95, respectively. Forty percent of the first instar larvae reached the fifth larval stage. Second instar S. exigua larvae reared on chrysanthemum were significantly more susceptible to SeMNPV than larvae reared on an artificial diet. The food source had no effect on the time to kill S. exigua larvae. Cadavers of second, third and fourth instar S. exigua larvae contaminated on average 1.4, 2.5 and 3.3 chrysanthemum leaves. Second to fourth instar S. exigua larvae visited 2–3 leaves per day and spent 15–55% of the time on the underside of leaves. The above information is of critical importance for a trustworthy simulation of the epidemiology of SeMNPV in chrysanthemum.  相似文献   

18.
Rudolf VH  Armstrong J 《Oecologia》2008,157(4):675-686
Many organisms undergo ontogenetic niche shifts due to considerable changes in size during their development. These ontogenetic shifts can alter the trophic position of individuals, the type and strength of ecological interactions across species, and allow for cannibalism within species. In this study we ask if and how the interaction of a size refuge and cannibalism in the prey alters the dynamics of intraguild predation (IGP) systems. By manipulating the composition of large cannibalistic (Aeshna umbrosa) and predatory (Anax junius) dragonfly larvae in mesocosms we show that the interaction of cannibals and predators was non-linear and increased the survival of prey. The structure of the final resource community shared by prey and predator differed between small and large dragonfly treatments but not within size classes across species. In general, the small prey stage showed similar shifts in microhabitat use and refuge use when exposed to either conspecific cannibals or predators, while large cannibals showed no clear anti-predator response. However, further behavioral experiments revealed that specific behavioral components, such as distances between individuals or number of movements, differed when individuals were exposed to either cannibals or predators. This indicates that individuals discriminated between conspecific or heterospecific predators. Furthermore, in similar experiments large cannibals and predators showed different behaviors when exposed to conspecifics rather than to each other. These changes in behavior are consistent with the observed increase in prey survival. In general, the results indicate that cannibalism and ontogenetic niche shifts can result in behavior-mediated indirect interactions that reduce the impact of the predator on the mortality of its prey and alter the interactions of IGP systems. However, they also indicate that size is not the sole determinant and that we also need to account for the species identity when predicting the dynamics of communities.  相似文献   

19.
Summary The searching and handling behaviors ofHarmonia axyridis larvae to the colony ofRhopalosiphum padi were experimentally examined and the processes of their aggregation to the prey colony was analyzed. All the instar larvae searched for the prey at random and they have no preference to the prey colony, but except the 1st instar they tend to aggregate to the plants with prey colonies. The 1st instar larvae tend to stay on the plants they once located. The 2nd to 4th instar larvae often emigrate from the plants without prey colony but seldom emigrate from the plants with prey colonies, and consequently, they aggregate to the plants with prey colonies. The expense of time to eat prey (in the 2nd and 3rd instars) and the change of searching behavior for the prey after feeding (in the 3rd and 4th instars) are responsible for the larval concentration to prey colony as a trapping effect for predators to prey colony.  相似文献   

20.
M. Büns  H. T. Ratte 《Oecologia》1991,88(4):470-476
Summary Chaoborus crystallinus fourth-instar larvae were reared individually at 14°, 17° and 20° C under different food conditions. Daphnia magna of 1.25 mm average length served as prey. The following were measured: amount of prey ingested, larval weight gain, duration of fourth instar, body weight of the adults, and egg number per female. At a given temperature, the body weight, egg-number and developmental rate increased with food consumption. At a given food consumption, higher temperatures caused a decrease in body weight and egg number, and an increase in developmental rate. Gross production efficiencies for fourth-instar larvae were highest at temperatures around 17° C. The results clearly indicate that from an energetic point of view higher temperatures are disadvantageous. In C. crystallinus vertical migration is evidently a way of lowering the temperature to which the animals are exposed and hence optimizing food conversion into biomass and offspring production, especially if prey densities are below the saturation level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号