首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When mice from different inbred strains are injected intraperitoneally with 3-methylcholanthrene (MC), the activity of aryl hydrocarbon hydroxylase (AHH) rapidly increases in livers of some strains but not others. AHH plays a role in the metabolism of polycyclic hydrocarbons. Alleles at a small number of loci account for most of the variation in inducibility of hepatic AHH among mice, when MC is used as the inducing agent. Cigarette smoke is a common source of carcinogenic polycyclic hydrocarbons in the environment. Since some of the hydrocarbons in cigarette smoke are metabolized by AHH, the activity of AHH in tissues may affect the carcinogenicity of smoke in those tissues. The purpose of these experiments was to see whether induction of AHH in lung in response to cigarette smoke is regulated by the same genes that regulate induction of AHH in liver in response to MC. Mouse strains AKR/J and C57L/J and six recombinant inbred (RI) lines derived from them were tested for the response of AHH in lung and liver to parenteral MC or inhalation of cigarette smoke. Inducibility (the ratio of MC-induced AHH activities to basal AHH activities) in liver from MC-treated RI lines is bimodal and compatible with Mendelian segregation of genes at a small number of loci. Increased activities of AHH in MC-treated liver are associated with increased ability to metabolize BP and whole smoke condensates to mutagens detected by Salmonella typhimurium TA1538. Inducibility of AHH in lung in response to MC is not bimodal, and no definite conclusion about the number of loci can be made. When actual levels of AHH activity are considered, following the administration of MC as inducing agent, there is a correlation (r=0.89, p<0.01) between AHH levels in liver and lung, suggesting that some genes affecting liver also affect lung. Basal and MC-induced AHH levels in lung are also correlated (r=0.86, p<0.01). Mice with high basal activities have two to threefold higher levels of AHH after MC treatment than do mice with low basal activities. Induction of AHH in pulmonary tissues occurs in all mice after either parenteral MC or smoke inhalation. In contrast to MC treatment, AHH activities in lungs following smoke inhalation are not correlated with AHH levels in liver after MC (r=0.49) and are only weakly correlated with basal (r=0.66, 0.05相似文献   

2.

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.  相似文献   

3.
Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is one of the major components of cigarette smoke which is believed to be partly responsible for the deleterious effect of cigarette smoke. There was significant alteration in the concentration of glycosaminoglycans (GAG) in rats exposed to cigarette smoke. Administration of nicotine to rats has been found to decrease many of GAG fractions in the aorta, liver and heart and increase in the lungs. The increase in GAG now observed in lung tissue in rats administered nicotine and those exposed to cigarette smoke may be involved in the increased incidence of lung cancer in smokers. Increased activity of many of GAG hydrolysing enzymes indicates increased degradation of GAG. Sulphate metabolism in the liver is also significantly altered by nicotine. Thus administration of nicotine to rats caused alteration in the metabolism of GAG which are similar to those observed on exposure of rats to cigarette smoke, indicating that nicotine content of the tobacco smoke may partly be responsible for the effect on GAG observed on exposure to cigarette smoke.  相似文献   

4.
Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label‐free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease.  相似文献   

5.
Synchronous fluorescence spectrophotometry (SFS), developed to study benzo[a]pyrene-7,8-diol-9,10-epoxide(BPDE)-DNA, was used to measure the in vivo formation of DNA-adducts in genetically responsive C57BL/6 (B6) and non-responsive DBA/2 (D2) mice. Treatment with cigarette smoke by inhalation for 3-16 days, or i.p. injection of cigarette smoke condensate or neutral fraction did not lead to detectable levels of BPDE-DNA-adducts in either lungs or liver, although aryl hydrocarbon hydroxylase (AHH) activity, an indicator of benzo[a]pyrene (BP) metabolism, was clearly induced in lungs of B6 mouse. A dose-dependent amount of BPDE-DNA-adducts in lung and somewhat less in liver was found after i.p. injection with BP (20-80 mg/kg). Mice treated with vehicle or 4 mg/kg of BP were negative for adducts by SFS. In B6 mice AHH was induced both in lungs and livers while there was no AHH induction in D2 mice although the levels of BPDE-DNA-adducts were somewhat higher than in B6 mice. Thus, no clear correlation seems to exist between AHH activity and the formation of BPDE-DNA-adducts. Also, according to our results SFS can be used to quantitate adduct-formation in in vivo animal studies.  相似文献   

6.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively(11,13).  相似文献   

7.
《Biomarkers》2013,18(7):567-576
Historically, it has been challenging to go beyond epidemiology to investigate the pathogenic changes caused by tobacco smoking. The EpiAirway-100 (MatTek Corp., Ashland, MA) was employed to investigate the effects of cigarette smoke components. Exposure at the air-liquid-interface represented particle and vapour phase components of cigarette smoke. A proteomic study utilising iTRAQ labelling compared expression profiles. The correlative histopathology revealed focal regions of hyperplasia, hypertrophy, cytolysis and necrosis. We identified 466 proteins, 250 with a parameter of two or more peptides. Four of these proteins are potential markers of lung injury and three are related to mechanistic pathways of disease.  相似文献   

8.
We used a novel perfusion system to expose cultured human umbilical vein endothelial cells (HUVEC) to water-soluble components of cigarette smoke and study subsequent adhesion of flowing neutrophils. Neutrophils did not bind to HUVEC immediately after it had been exposed to cigarette smoke, but many adhered 90-150 min after exposure. The effect was reduced if the exposed medium was made serum-free, but this reduction was partially reversed if low density lipoprotein was added. Treatment of smoke-exposed HUVEC with antibodies against E-selectin or P-selectin reduced adhesion by approximately 50% or 75%, respectively; a combination of both antibodies essentially abolished adhesion. Enzyme-linked immunosorbent assay confirmed that exposure to smoke caused HUVEC to upregulate surface expression of E- and P-selectin. Thus, water-soluble constituent(s) of cigarette smoke cause efficient selectin-mediated capture of flowing neutrophils. This pro-inflammatory response may contribute to pathology associated with smoking, especially in tissues remote from the lung.  相似文献   

9.
Many pathological conditions linked to cigarette smoking are caused by the production of reactive oxygen species (ROS). The present study was conducted to analyze the effect of ROS on the lungs of Swiss mice exposed to cigarette smoking, focusing on autophagy-mediated mechanisms, and investigate the involvement of SESN2, AMPK, and mTOR signaling. Mice were exposed to cigarette smoke (CS) for 7, 15, 30, 45, and 60 days; the control group was not exposed to CS. Only mice exposed to CS for 45 days were selected for subsequent N-acetylcysteine (NAC) supplementation and smoke cessation analyses. Exposure to CS increased the production of ROS and induced molecular changes in the autophagy pathway, including an increase in phosphorylated AMPK and ULK1, reduction in phosphorylated mTOR, and increases in SESN2, ATG12, and LC3B levels. NAC supplementation reduced ROS levels and reversed all molecular changes observed upon CS treatment, suggesting the involvement of oxidative stress in inducing autophagy upon CS exposure. When exposure to CS was stopped, there were decreases in the levels of oxidative stress, AMPK and ULK1 phosphorylation, and autophagy-initiating molecules and increase in mTOR phosphorylation. In conclusion, these results suggest the involvement of ROS, SESN2, AMPK, and mTOR in the CS-induced autophagic process in the lung.  相似文献   

10.
《Free radical research》2013,47(11):1413-1419
Abstract

Recently, we have reported the dysregulation of circulating serotonin (5-hydroxytryptamine, 5-HT) homeostasis in patients with chronic obstructive pulmonary disease (COPD). An increase in metabolism of 5-HT has been reported to induce oxidative stress via monoamine oxidase (MAO)-dependent pathway. The present study aimed at investigating the effect of cigarette smoke exposure on the systemic circulation and local airway 5-HT levels as well as MAO-mediated oxidative pathway using a cigarette smoke-exposed rat model. Male Sprague-Dawley rats (150–200 g) were exposed to either sham air or 4% (v/v, smoke/air) cigarette smoke for 1 hour daily for 56 consecutive days. Sera, bronchoalveolar larvage (BAL) and lung tissues were collected 24 hours after the last exposure. We found a significant reduction in the reduced glutathione (rGSH) and an elevation in advanced oxidation protein products (AOPP), a protein oxidation marker, in the lung of cigarette smoke-exposed group (p?<?0.05). A significant increase in 5-HT was found in serum (p?<?0.05), but not in the BAL or lung, after cigarette smoke exposure. MAO-A activity was significantly elevated in the lung of cigarette smoke-exposed group (p?<?0.05). Furthermore, increased superoxide anion levels were found in lung homogenates of cigarette smoke-exposed rats after incubation with 5-HT (p?<?0.05), which was positively associated with the increase in MAO-A activity (r?=?0.639, p?<?0.05). Our findings supported the presence of GSH disruption and protein oxidation in the lung after cigarette smoke exposure. The metabolism of 5-HT by MAO-A in the lung enhanced cigarette smoke-induced superoxides, which might contribute to the pathogenesis of COPD.  相似文献   

11.
The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes.  相似文献   

12.
Cigarette smoke has been directly implicated in the disease pathogenesis of a plethora of different human cancer subtypes, including breast cancers. The prevailing view is that cigarette smoke acts as a mutagen and DNA damaging agent in normal epithelial cells, driving tumor initiation. However, its potential negative metabolic effects on the normal stromal microenvironment have been largely ignored. Here, we propose a new mechanism by which carcinogen-rich cigarette smoke may promote cancer growth, by metabolically “fertilizing” the host microenvironment. More specifically, we show that cigarette smoke exposure is indeed sufficient to drive the onset of the cancer-associated fibroblast phenotype via the induction of DNA damage, autophagy and mitophagy in the tumor stroma. In turn, cigarette smoke exposure induces premature aging and mitochondrial dysfunction in stromal fibroblasts, leading to the secretion of high-energy mitochondrial fuels, such as L-lactate and ketone bodies. Hence, cigarette smoke induces catabolism in the local microenvironment, directly fueling oxidative mitochondrial metabolism (OXPHOS) in neighboring epithelial cancer cells, actively promoting anabolic tumor growth. Remarkably, these autophagic-senescent fibroblasts increased breast cancer tumor growth in vivo by up to 4-fold. Importantly, we show that cigarette smoke-induced metabolic reprogramming of the fibroblastic stroma occurs independently of tumor neo-angiogenesis. We discuss the possible implications of our current findings for the prevention of aging-associated human diseases and, especially, common epithelial cancers, as we show that cigarette smoke can systemically accelerate aging in the host microenvironment. Finally, our current findings are consistent with the idea that cigarette smoke induces the “reverse Warburg effect,” thereby fueling “two-compartment tumor metabolism” and oxidative mitochondrial metabolism in epithelial cancer cells.  相似文献   

13.
Inhalation of airborne pollution particles that contain iron can result in a variety of detrimental changes to lung cells and tissues. The lung iron burden can be substantially increased by exposure to cigarette smoke, and cigarette smoke contains iron particulates, as well as several environmental toxins, that could influence intracellular iron status. We are interested in the effects of environmental contaminants on intracellular iron metabolism. We initiated our studies using lung A549 type II epithelial cells as a model, and we evaluated the effects of iron dose and smoke treatment on several parameters of intracellular iron metabolism. We show that iron at a physiological dose stimulates ferritin synthesis without altering the transferrin receptor (TfR) mRNA levels of these cells. This is mediated primarily by a reduction of iron regulatory protein 2. Higher doses of iron reduce iron regulatory protein-1 binding activity and are accompanied by a reduction in TfR mRNA. Thus, for A549 cells, different mechanisms influencing IRP-IRE interaction allow ferritin translation in the presence of TfR mRNA to provide for iron needs and yet prevent excessive iron uptake. More importantly, we report that smoke treatment diminishes ferritin levels and increases TfR mRNA of A549 cells. Ferritin serves as a cytoprotective agent against oxidative stress. These data suggest that exposure of lung cells to low levels of smoke as are present in environmental pollutants could result in reduced cytoprotection by ferritin at a time when iron uptake is sustained, thus enhancing the possibility of lung damage by iron-mediated oxidative stress.  相似文献   

14.
The newly identified gene, overexpressed in lung cancer 1 (OLC1), is highly expressed as OLC1 protein in the tumor tissues of lung cancer patients with histories of cigarette smoking. However, the underlying mechanisms of how the gene is affected by cigarette smoke have been poorly characterized. In this study, we investigated how OLC1 is regulated in lung cancer cells by cigarette smoke condensate (CSC).Compared to the controls, CSC treatment increased OLC1 protein levels in a dose- and time-dependent manner without affecting OLC1 mRNA levels in lung cancer cells. Ubiquitination of OLC1 protein was blocked upon CSC treatment. Biochemical analysis revealed that the ubiquitin E3 ligase anaphase promoting complex (APC) and its activators cell-division cycle protein 20 (CDC20) and cadherin-1 (CDH1) are responsible for the degradation of OLC1. However, upon introducing CSC the binding of OLC1 to the proteins CDC20, CDH1, and APC2 was impaired. These results demonstrate that CSC regulates OLC1 expression in lung cancer cells by compromising its ubiquitination and subsequent degradation through the ubiquitin E3 ligase APC.  相似文献   

15.
The aim of the present study was to investigate the effect of curcumin (Cur) on the activity of ectonucleoside triphosphate diphosphohydrolase (CD39), 5'‐nucleotidase (CD73) and adenosine deaminase in platelets of cigarette smoke‐exposed rats. For that purpose, we subjected male Wistar rats to a treatment with Cur and cigarette smoke, once a day, 5 days each week, for 30 days. The rats were treated by gavage with Cur or corn oil and then exposed to cigarette smoke. The experimental procedures were divided into two sets of experiments. In the first, the animals were divided into four groups: vehicle (corn oil) or Cur 12·5, 25 or 50 mg·kg‐1. In the second, the animals were divided into five groups: vehicle (corn oil), smoke, or smoke and Cur 12·5, 25 or 50 mg·kg‐1. The results showed that treatment with Cur significantly prevented the increased adenosine triphosphate (ATP) (121%) and adenosine monophosphate (AMP) (159%) and the decreased adenosine diphosphate (ADP) (51%) hydrolysis observed in the cigarette smoke‐exposed rats Our results suggest that those purinergic enzyme alterations observed in the cigarette smoke‐exposed rats could be related to an excessive platelet aggregation and point toward the potential of Cur to modulate purinergic signalling and, consequently, regulate the thrombus formation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Cigarette smoking is known to be a risk factor for several chronic and neoplastic diseases. Many compounds formed by cigarette burning, ranging from particulate materials to water solutes and gaseous extracts, are considered to be noxious agents, and many biochemical and molecular mechanisms have been proposed for the toxic effects of cigarette smoke. The oral cavity and the upper respiratory tract represent the first contact areas for smoke compounds; even a single cigarette can produce marked effects on some components of the oral cavity, either chemical compounds, such as glutathione and enzymes, or cellular elements, such as polymorphonuclear leukocytes. Several studies suggest a protective role of glutathione against the noxious effects of tobacco smoke; the sulphydril groups of glutathione, in fact, could react with some smoke products, such as unsaturated aldehydes, leading to the formation of harmless intermediate compounds and simultaneously preventing the inactivation of metabolically essential molecules, such as some enzymes. In this paper we analyse the effect of a filter containing glutathione on the respiratory burst of polymorphonuclear leukocytes exposed to aqueous extract of cigarette smoke, measuring their chemiluminescence activity. The results of this paper indicate that the GSH-containing filter has a likely protective effect against the inhibition of cigarette smoke extract on polymorphonuclear leukocyte activity.  相似文献   

17.
The lung is prominently afflicted during the course of HIV-1 disease by both infectious and noninfectious complications. Direct or indirect effects of HIV-1 are likely central to the pathogenesis of these complications. Thus, any changes in viral load locally would negatively impact on the lung. This review focuses on the endogenous influences (immune effector cells, surfactant) and the exogenous factors (including infections such as tuberculosis and noninfectious exposures like cigarette smoke) that may contribute to activation or inactivation of HIV-1 in the lung.  相似文献   

18.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice following a single intraperitoneal (i.p.) injection. However, inhalation of mainstream cigarette smoke does not induce or promote NNK-induced lung tumors in this mouse strain purported to be sensitive to chemically-induced lung tumorigenesis. The critical events for NNK-induced lung tumorigenesis in A/J mice is thought to involve O(6)-methylguanine (O(6)MeG) adduct formation, GC-->AT transitional mispairing, and activation of the K-ras proto-oncogene. The objective of this study was to test the hypothesis that a smoke-induced shift in NNK metabolism led to the observed decrease in O(6)MeG adducts in the lung and liver of A/J mice co-administered NNK with a concomitant 2-h exposure to cigarette smoke as observed in previous studies. Following 2 h nose-only exposure to mainstream cigarette smoke (600 mg total suspended particulates/m(3) of air), mice (n=12) were administered 7.5 micromol NNK (10 microCi [5-3H]NNK) by i.p. injection. A control group of 12 mice was sham-exposed to HEPA-filtered air for 2 h prior to i.p. administration of 7.5 micromol NNK (10 microCi [5-3H]NNK). Exposure to mainstream cigarette smoke had no effect on total excretion of NNK metabolites in 24 h urine; however, the metabolite pattern was significantly changed. Mice exposed to mainstream cigarette smoke excreted 25% more 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) than control mice, a statistically significant increase (P<0.0001). Cigarette smoke exposure significantly reduced alpha-hydroxylation of NNK to potential methylating species; this is based on the 15% reduction in excretion of the 4-(3-pyridyl)-4-hydroxybutanoic acid and 42% reduction in excretion of 4-(3-pyridyl)-4-oxobutanoic acid versus control. Detoxication of NNK and NNAL by pyridine-N-oxidation, and glucuronidation of NNAL were not significantly different in the two groups of mice. The observed reduction in alpha-hydroxylation of NNK to potential methylating species in mainstream cigarette smoke-exposed A/J mice provides further mechanistic support for earlier studies demonstrating that concurrent inhalation of mainstream cigarette smoke results in a significant reduction of NNK-induced O(6)MeG adduct formation in lung and liver of A/J mice compared to mice treated only with NNK.  相似文献   

19.
20.
Cigarette smoking plays an important role in the process of lung cancer, during which DNA damage is proved to be involved. Non-coding RNAs are found to be involved in the DNA damage and repair processes induced by cigarette smoke. In the present study, we investigated the role of lncRNA LCPAT1 in DNA damage caused by CSE in Beas-2B cells. Our results indicate that LCPAT1, through RCC2 is involved in the CSE-induced DNA damage providing new insight into the lung carcinogenesis related to cigarette smoking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号