首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tightly coupled membranes of Paracoccus denitrificans catalyze oxidative phosphorylation but are incapable of ATP hydrolysis. The conditions for observation and registration of the venturicidin-sensitive ATPase activity of subbacterial particles derived from this organism are described. The ATP hydrolytic activity does not appear after prolonged incubation in the presence of pyruvate kinase and phosphoenol pyruvate (to remove ADP), EDTA (to remove Mg2+) and/or inorganic phosphate, whereas the activity dramatically increases after energization of the membranes. ATP hydrolysis by activated ATPase is coupled with electric potential formation. Inorganic phosphate prevents and azide promotes a decline of the enzyme activity during ATP hydrolysis. The addition of uncouplers results in rapid and complete inactivation of ATPase. The dependent ATPase activity increases upon dilution of the membranes. The results are discussed as evidence for the presence of distinct ATP-synthase and ATP-hydrolase states of FoF1 complex in the coupling membranes (Vinogradov, A. D. (1999) Biochemistry (Moscow), 64, 1219-1229). The proposal is made that part of the free energy released from oxidoreduction in the respiratory chain is used to maintain active conformation of the energy-transducing proteins.  相似文献   

2.
ATPase was detected in the membranes of a motile Streptococcus. Maximal enzymic activity was observed at pH 8 and ATP/Mg2+ ratio of 2. Mn2+ and Ca2+ could replace Mg2+ to some extent. Besides ATP, GTP and ITP were substrates. The enzyme was inhibited by N,N-dicyclohexylcarbodiimide but not by sodium azide, uncouplers or bathophenanthroline.An electrochemical gradient of protons, which was artificially imposed across the membranes of Streptococcus cells by manipulation of either the K+ diffusion potential or the transmembrane pH gradient, led to ATP synthesis. ATP synthesis was abolished by proton conductors, an inhibitor of the ATPase or an increase in the extracellular K+ concentration. A comparison between the phosphate potential and the electrochemical proton gradient showed that the data found are in agreement with a stoichiometry of 2 protons translocated per molecule ATP synthesized.Abbreviations electrochemical gradient of protons - DMO 5,5-dimethyl-2,4-oxazolidinedione - CCCP carbonylcyanide m-chlorophenylhydrazone - FCCP carbonylcyanide p-trifluoromethoxyphenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DNP 2,4-dimitrophenol  相似文献   

3.
This work tested the hypothesis that thylakoid localized proton-binding domains, suggested to be involved in localized -driven ATP formation, are maintained with the involvement of several membrane proteins, including the LHCII (Laszlo, J. A., Baker, G. M., and Dilley, R. A. (1984) Biochim. Biophys. Acta 764, 160–169), which comprises about 50% of the total thylakoid protein. The concept we have in mind is that several membrane proteins cooperate to shield a localized proton diffusion pathway from direct contact with the lumen, thus providing a physical barrier to H+ equilibration between the sequestered domains and the lumen. A barely mutant,chlorina f 2, that lacks Chl b and does not accumulate some of the LHCII proteins, was tested for its capacity to carry out localized-proton gradient-dependent ATP formation. Two previously developed assays permit clear discrimination between localized and delocalized gradient-driven ATP formation. Those assays include the effect of a permeable buffer, pyridine, on the number of single-turnover flashes needed to reach the energetic threshold for ATP formation and the more recently developed assay for lumen pH using 8-hydroxy-1,3,6-pyrene trisulfonic acid as a lumenally loaded pH-sensitive fluorescent probe. By those two criteria, the wild-type barley thylakoids revealed either a localized or a delocalized energy coupling mode under low- or high-salt storage conditions, respectively. Addition of Ca++ to the high-salt storage medium caused those thylakoids to maintain a localized energy-coupling response, as previously observed for pea thylakoids. In contrast, thechlorina f 2 mutant thylakoids had an active delocalized energy coupling activity but did not show localized energy coupling under any conditions, and added Ca++ to the thylakoid storage medium did not alter the delocalized energy coupling mode. One interpretation of the results is that the absence of the LHCII polypeptides produces a leaky pathway for protons which allows the gradient to equilibrate with the lumen under all conditions. Another interpretation is possible but seems less likely, that being that the absence of the LHCII polypeptides in some way causes the proposed Ca++ -gated H+ flux site on the membrane sector (CF0) of the energy coupling complex to lose its gating function.  相似文献   

4.
The properties of membrane-associated ATPase of cucumber (Cucumis sativus cv. Seiriki No. 2) roots cultured in a complete medium (complete enzyme) and in a medium lacking Ca2+ (Ca2+-deficient enzyme) were investigated. The basal activity of membrane-associated ATPase increased during Ca2+ starvation, while Mg2+-activation of the enzyme decreased and even resulted in inhibition by high Mg2+ concentration at the late stage of the Ca2+ starvation. The complete enzyme had low basal activity and showed a Mg2+-activated hyperbolic reaction curve in relation to ATP concentration. Ca2+-deficient enzyme with high basal activity showed a biphasic reaction curve and Mg2+-activation was seen only at high ATP concentrations. Activation of membrane-associated ATPase by various cations was decreased or lost during Ca2+ starvation. The basal ATPase activity of Ca2+-deficient enzyme increased for various substrates including pyrophosphate, p-nitrophenyl phosphate, glucose-6 phosphate, β-glycerophosphate, AMP, ADP and ATP. Mg2+-activation was found only for ADP and ATP in both the complete and Ca2+-deficient enzymes, but the activation for ATP was greatly reduced by Ca2+ starvation. The heat inactivation curves for basal and Mg2+-activated ATPase did not differ much between the complete and Ca2+-deficient enzyme. The delipidation of membrane-associated enzyme by acetone affected the protein content and the basal activity slightly, but inhibited the Mg2+-activated ATPase activity clearly with somewhat different behaviour between the complete and Ca2+-deficient enzyme.  相似文献   

5.
In contrast to everted mitochondrial inner membrane vesicles and eubacterial plasma membrane vesicles, the ATPase activity of chloroplast ATP synthase in thylakoid membranes is extremely low. Several treatments of thylakoids that unmask ATPase activity are known. Illumination of thylakoids that contain reduced ATP synthase (reduced thylakoids) promotes the hydrolysis of ATP in the dark. Incubation of thylakoids with trypsin can also elicit higher rates of ATPase activity. In this paper the properties of the ATPase activity of the ATP synthase in thylakoids treated with trypsin are compared with those of the ATPase activity in reduced thylakoids. The trypsin-treated membranes have significant ATPase activity in the presence of Ca2+, whereas the Ca2+-ATPase activity of reduced thylakoids is very low. The Mg2+-ATPase activity of the trypsinized thylakoids was only partially inhibited by the uncouplers, at concentrations that fully inhibit the ATPase activity of reduced membranes. Incubation of reduced thylakoids with ADP in Tris buffer prior to assay abolishes Mg2+-ATPase activity. The Mg2+-ATPase activity of trypsin-treated thylakoids was unaffected by incubation with ADP. Trypsin-treated membranes can make ATP at rates that are 75–80% of those of untreated thylakoids. The Mg2+-ATPase activity of trypsin-treated thylakoids is coupled to inward proton translocation and 10 mM sulfite stimulates both proton uptake and ATP hydrolysis. It is concluded that cleavage of the γ subunit of the ATP synthase by trypsin prevents inhibition of ATPase activity by the ε subunit, but only partially overcomes inhibition by Mg2+ and ADP during assay.  相似文献   

6.
Luit Slooten  Adriaan Nuyten 《BBA》1981,638(2):313-326
(1) Light-activated ‘dark’ ATPase in Rhodospirillum rubrum chromatophores is inhibited by preincubation with ADP or ATP (in the absence of Mg2+). I50 values were 0.5 and 6 μM, respectively, after 20 s of preincubation. (2) In the absence of MgATP, the rate constant for dissociation of ADP or ATP from the inhibitory site was less than 0.2 min?1 in deenergized membranes. Illumination in the absence of MgATP caused an increase of over 60-fold in both rate constants. (3) In some experiments hydrolysis was performed in the presence of 10 μM Mg2+ and 0.2 mM MgATP. Under these conditions, the ADP or ATP inhibition was reversed within about 20 or about 80 s, respectively, after the onset of hydrolysis. This suggests that recovery from ADP or ATP inhibition (i.e., release of tightly bound ADP or ATP) in the dark is induced by MgATP binding to a second nucleotide-binding site on the enzyme. (4) Results obtained with variable concentrations of uncoupler suggest that in the absence of bound Mg2+ (see below), MgATP-induced release of tightly bound ADP or ATP does not require a transmembrane Δ\?gmH+. This, together with the inhibitor/substrate ratios prevalent during hydrolysis, suggests that these reactivation reactions involve MgATP binding to a high-affinity binding site (Kd < 2 μM). (5) At high concentrations of uncoupler, a time-dependent inhibition of hydrolysis occurred in the control chromatophores as well as in the nucleotide-pretreated chromatophores. This deactivation was dependent on Mg2+. In addition, MgATP-dependent reversal of ADP inhibition in the dark was inhibited by Mg2+ at concentrations above 20–30 μM. By contrast, MgATP-dependent reversal of ADP inhibition occurs within 3–4 s, despite the presence of high concentrations of Mg2+ if the chromatophores are illuminated during contact with the nucleotides. Uncoupler abolishes the effect of illumination. A reaction scheme incorporating these findings is proposed. (6) The implications of these findings for the mechanism of lightactivation of ATP hydrolysis (Slooten, L. and Nuyten, A., (1981) Biochim. Biophys. Acta 638, 305–312) are discussed.  相似文献   

7.
Possible routes for the evolution of cell energetics are considered. It is assumed that u.v. light was the primary energy source for the precursors of the primordial living cell and that primitive energetics might have been based on the use of the adenine moiety of ADP as the u.v. chromophore. It is proposed that the excitation of the adenine residue facilitated phosphorylation of its amino group with subsequent transfer of a phosphoryl group to the terminal phosphate of ADP to form ATP. ATP-driven carbohydrate synthesis is considered as a mechanism for storing u.v.-derived energy, which was then used in the dark. Glycolysis presumably produced compounds like ethanol and CO2 which easily penetrate the membrane and therefore were lost by the cell. Later lactate-producing glycolysis appeared, the end product being non-penetrant and, hence, retained inside the cell to be utilized to regenerate carboxydrates when light energy became available. Production of lactate was accompanied by accumulation of equimolar H+. To avoid acidification of the cell interior, an F0-type H+ channel was employed. Later it was supplemented with F1. This allowed the ATP energy to be used for uphill H+ pumping to the medium, which was acidified due to glycolytic activity of the cells.In the subsequent course of evolution, u.v. light was replaced by visible light, which has lower energy but is less dangerous for the cell. It is assumed that bacteriorhodopsin, a simple and very stable light-driven H+ pump which still exists in halophilic and thermophilic Archaea, was the primary system utilizing visible light. The formed was used to reverse the H+-ATPase, which began to function as H+-ATP-synthase. Later, bacteriorhodopsin photosynthesis was substituted by a more efficient chlorophyll photosynthesis, producing not only ATP, but also carbohydrates. O2, a side product of this process, was consumed by the H+-motive respiratory chain to form in the dark. At the next stage of evolution, a parallel energy-transducing mechanism appeared which employed Na+ instead of H+ as the coupling ion (the Na+ cycle). As a result, the bioenergetic system became more stable under unfavorable conditions. Apparently, the latest inventions of evolution of biological energy transducers are those which can utilize and outside the coupling membrane, like the bacterial flagellar motor and the TonB-mediated uphill transport of solutes across the outer membrane of bacteria.  相似文献   

8.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

9.
Transport of H+, K+, Na+ and Ca++ in Streptococcus   总被引:6,自引:0,他引:6  
Summary The streptococci differ from other bacteria in that cation translocations (with the possible exception of one of the K+ uptake systems) occur by primary transport systems, i.e., by cation pumps which use directly the free energy released during hydrolysis of chemical bonds to power transport. Transport systems in other bacteria, especially for Na+ and Ca++, are often secondary, using the free energy of another ion gradient to drive cation transport. In streptococci H+ efflux occurs via the F1F0-ATPase. This enzyme is composed of eight distinct subunits. Three of the subunits are embedded in the membrane and form a H+ channel; this is called the F0 portion of the enzyme. The other five subunits form the catalytic part of the enzyme, called F1, which faces the cytoplasm and can easily be stripped from the membrane. Physiologically, this enzyme functions as a H+-ATPase, pumping protons out of the cell to form an electrochemical proton gradient, . The F1F0-ATPase, however, is fully reversible and if supplied with Pi, ADP and a + of sufficient magnitude (ca –200 mv) catalyzes the synthesis of ATP. Streptococcus faecalis can accumulate K+ and establish a gradient of 50 000:1 (in>out) under some conditions. Uptake occurs by two transport systems. The dominant, constitutive system requires both an electrochemical proton gradient and ATP to operate. The minor, inducible K+ transport system, which has many similarities to the K+-ATPase of the Kdp transport system found in Escherichia coli, requires only ATP to power K+ uptake.Sodium extrusion occurs by a Na+/H+-ATPase. Exchange is electroneutral and there is no requirement for a . The possibility that the Na+/H+-ATPase may consist of two parts, a catalytic subunit and a Na+/H+ antiport subunit, is suggested by the finding that damage to the Na+ transport system either through mutation or protease action leads to the appearance of -requiring Na+/H+ antiporter activity.Ca++ like Na+ is extruded from metabolizing, intact cells. Transport requires no but does require ATP. Reconstitution of Ca++ transport activity with accompanying Ca++-stimulated ATPase activity into proteoliposomes suggests that Ca++ is transported by a Ca++-translocating ATPase.Where respiring organelles and bacteria use secondary transport systems the streptococci have developed cation pumps. The streptococci, which are predominantly glycolyzing bacteria, generate a much inferior to that of respiring organisms and organelles. The cation pumps may have developed simply in response to an inadequate .Abbreviations electrochemical potential of protons - membrane potential - pH pH gradient - p proton-motive force - DCCD N,Na1-dicyclohexlcarbodiimide - TCS tetrachlorosalicylanilide - FCCP carbonylcyanide-p-trifluoromethylphenylhydrazone - CCCP carbonylcyanie-m-chlorophenylhydrazone - TPMP+ triphenylmethyl phosphonium ion - DDA+ dibenzyldimethylammonium ion - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - EGTA ethyleneglycol-bis (amino-ethyl-ether)-N,N-tetraacetic acid  相似文献   

10.
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps ( generators) are described, i.e., Na+-motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. InVibrio alginolyticus, it was found that , generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). InPropionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, inV. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+-motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerantBacillus FTU, there are H+ - and Na+-motive terminal oxidases. Sometimes, the Na+-translocating enzyme strongly differs from its H+-translocating homolog. So, the Na+-motive and H+-motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+-motive and Na+-motive terminal oxidases differ in that the former is ofaa 3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the sameP. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary generator(s) and consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera:Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcin, etc. Thus, the sodium world seems to occupy a rather extensive area in the biosphere.  相似文献   

11.
The 2′,3′-dialdehydes of ADP and ATP (oADP and oATP), obtained by periodate oxidation of ADP and ATP, inhibited the hydrolytic activity of the purified Ca2+.Mg2+-activated ATPase of Escherichia coli. Nonspecific labeling of amino groups by these dialdehydes was corrected by carrying out the reactions in the presence of 15 mm ATP. Two types of modification of “ATP-protectable” binding sites by oATP could be detected. The binding of 2 mol “ATP-protectable” oATP/mol ATPase was without affect on ATPase activity and still occurred in the hydrolytically inactive ATPase of an unc A mutant. The binding of a further 3 mol “ATP-protectable” oATP/mol ATPase resulted in almost complete loss of ATPase activity although much of the loss occurred during the binding of the first additional molecule of oATP. This additional ATP-protectable oATP binding did not occur in the unc A mutant and so resembled both the inhibitory effect of oADP on the ATPase activity of normal strains and its lack of binding to the unc A ATPase (P. D. Bragg and C. Hou, 1980, Biochem. Biophys. Res. Commun.95, 952–957). The “ATP-protectable” binding sites for oADP and oATP were located on the α subunit of the ATPase. Binding of oADP or oATP did not result in release of the tightly bound ADP and ATP from the enzyme. We conclude that separate binding sites for oADP and oATP occur on the α subunits of the E. coli ATPase and that the former may be the active site(s) for ATP hydrolysis while the latter are involved in regulation of the ATPase complex.  相似文献   

12.
Incubation of F1 in the presence of Mg2+ results in a pronounced lag in its ATPase activity measured with the ATP-regenerating system. A decrease of the initial rate of ATPase induced by Mg2+ is also observed when free nucleotides were separated from the enzyme by Sephadex gel filtration. No inhibition is observed when F1 treated to remove tightly bound nucleotides was preincubated in the presence of Mg2+. Mg2+-induced inhibition of ATPase activity of nucleotide-depleted F1 can be restored by an addition of low concentrations of ADP. In all cases the inhibited ATPase can be activated by the ADP-removing system /phosphoenol pyruvate + pyruvate kinase/. It is concluded that i/ Mg2+-induced inhibition of the ATPase activity of F1 is due to the formation of an inactive F1. ADP complex; and ii/ unusual inhibition of oligomycin-sensitive ATPase by ADP /Fitin et al., Biochem. Biophys. Res. Communs. 1979, 86, 434/ is directed to F1 component of the complete mitochondrial ATPase system.  相似文献   

13.
For many bacteria Na+ bioenergetics is important as a link between exergonic and endergonic reactions in the membrane. This article focusses on two primary Na+ pumps in bacteria, the Na+-translocating oxaloacetate decarboxylase ofKlebsiella pneumoniae and the Na+-translocating F1F0 ATPase ofPropionigenium modestum. Oxaloacetate decarboxylase is an essential enzyme of the citrate fermentation pathway and has the additional function to conserve the free energy of decarboxylation by conversion into a Na+ gradient. Oxaloacetate decarboxylase is composed of three different subunits and the related methylmalonyl-CoA decarboxylase consists of five different subunits. The genes encoding these enzymes have been cloned and sequenced. Remarkable are large areas of complete sequence identity in the integral membrane-bound -subunits including two conserved aspartates that may be important for Na+ translocation. The coupling ratio of the decarboxylase Na+ pumps depended on and decreased from two to zero Na+ uptake per decarboxylation event as increased from zero to the steady state level.InP. modestum, is generated in the course of succinate fermentation to propionate and CO2. This is used by a unique Na+-translocating F1F0 ATPase for ATP synthesis. The enzyme is related to H+-translocating F1F0 ATPases. The F0 part is entirely responsible for the coupling of ion specificity. A hybrid ATPase formed by in vivo complementation of anEscherichia coli deletion mutant was completely functional as a Na+-ATP synthase conferring theE. coli strain the ability of Na+-dependent growth on succinate. The hybrid consisted of subunits a, c, b, and part of fromP. modestum and of the remaining subunits fromE. coli. Studies on Na+ translocation through the F0 part of theP. modestum ATPase revealed typical transporter-like properties. Sodium ions specifically protected the ATPase from the modification of glutamate-65 in subunit c by dicyclohexylcarbodiimide in a pH-dependent manner indicating that the Na+ binding site is at this highly conserved acidic amino acid residue of subunit c within the middle of the membrane.  相似文献   

14.
In this work, we present evidence of Fe2+ transport by rat heart mitochondrial F1Fo ATP synthase. Iron uptake by the vesicles containing the enzyme was concentration- and temperature-dependent, with an optimum temperature of 37 °C. Both ATP and ADP stimulated iron uptake in a concentration-dependent manner, whereas AMP, AMPPCP, and mADP did not. Inhibitors of the enzyme, oligomycin, and resveratrol similarly blocked iron transport. The iron uptake was confirmed by inhibition using specific antibodies against the α, β, and c subunits of the enzyme. Interestingly, slight transport of common divalent and trivalent metal ions such as Mg+2, Ca+2, Mn+2, Zn+2, Cu+2, Fe+3, and Al+3 was observed. Moreover, Cu+2, even in the nM range, inhibited iron uptake and attained maximum inhibition of approximately 56%. Inorganic phosphate (Pi) in the medium exerted an opposite effect depending on the type of adenosine nucleotide, which was suppressed with ATP, but enhanced with ADP. A similarly stimulating effect of ATP and ADP with an inverse effect of Pi suggests that the activity of ATPase and ATP synthase may be associated with iron uptake in a different manner, probably via antiport of H+.  相似文献   

15.
The electrochemical potential differences for potassium, between excised barley (Hordeum vulgare L.) roots and external media containing 0.05 mM KCl+0.5 mM CaSO4, were determined over a 4-h period during which initially low-K+ roots accumulated K+ by pretreatment in 50 mM KCl plus 0.5 mM CaCl2. This pretreatment resulted in increased internal [K+], decreased K+ influx (as measured from 0.05 mM KCl+0.5 mM CaSO4) and decreased values of . These observations indicate that the decline of K+ influx associated with increased internal K+ concentration cannot be accounted for by passive adjustment to the electrochemical gradient for this ion.  相似文献   

16.
Methanobacterium thermoautotrophicum was grown in continuous culture in a fermenter gassed with H2 and CO2 as sole carbon and energy sources, and in a medium which contained either NH4Cl or gaseous N2 as nitrogen source. Growth was possible with N2. Steady states were obtained at various gas flow rates with NH4Cl and with and the maintenance coefficient varied with the gas input and with the nitrogen source. Growth of Methanococcus thermolithotrophicus in continuous culture in a fermenter gassed with H2, CO2 as nitrogen, carbon and energy sources was also examined.Abbreviations molecular growth yield (g dry weight of cells per mol of CH4 evolved) - growth rate (h-1) - D dilution rate (h-1) - rate (h-1); relation of Neijssel and Tempest and of Stouthamer and Bettenhaussen - energy  相似文献   

17.
Brush border membrane vesicles (BBMV) from the midgut epithelial cells of silkworm larvae were prepared. ATP hydrolyzing activity (ATPase activity) was associated with the BBMV. ATPase activity without Mg2 + was not observed at pH 7 but substantial ATP hydrolyzing activity was observed at pH 7 with Mg2 +. The enzyme required Mn2 +, Mg2 +, or Ca2+ ions. The enzyme also hydrolyzed ITP and GTP but not p-NPP, ADP, or AMP. KNO3 and NEM strongly inhibited the ATPase activity. Behaviours of the ATPase against inhibitors suggested that it resembled vacuolar type ATPase.  相似文献   

18.
A fluorescent photoaffinity label—8-azido-1-N6-etheno-adenosine 5′-triphosphate (8-N3ε ATP)—for ATP-binding proteins has been synthesized. The effectiveness of the label is demonstrated with F1ATPase from Micrococcus luteus. 8-N3ε ATP is a substrate for the enzyme in the presence of bivalent cations. Ultraviolet irradiation of F1ATPase in the presence of the label and Mg2+ ions inhibits the enzyme irreversibly. The fluorescent label is bound preferentially to the β subunit of the enzyme. Labeling and inactivation are decreased by protection with ATP or ADP.  相似文献   

19.
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by an Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF3 and sodium orthovanadate (Na3VO4) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase due to its sensitivity to BeF3 and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.  相似文献   

20.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号