首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

2.
Abstract: Increased production of amyloid β peptide (Aβ) is highly suspected to play a major role in Alzheimer's disease (AD) pathogenesis. Because Aβ deposits in AD senile plaques appear uniquely in the brain and are fairly restricted to humans, we assessed amyloid precursor protein (APP) metabolism in primary cultures of the cell types associated with AD senile plaques: neurons, astrocytes, and microglia. We find that neurons secrete 40% of newly synthesized APP, whereas glia secrete only 10%. Neuronal and astrocytic APP processing generates five C-terminal fragments similar to those observed in human adult brain, of which the most amyloidogenic higher-molecular-weight fragments are more abundant. The level of amyloidogenic 4-kDa Aβ exceeds that of nonamyloidogenic 3-kDa Aβ in both neurons and astrocytes. In contrast, microglia make more of the smallest C-terminal fragment and no detectable Aβ. We conclude that human neurons and astrocytes generate higher levels of amyloidogenic fragments than microglia and favor amyloidogenic processing compared with previously studied culture systems. Therefore, we propose that the higher amyloidogenic processing of APP in neurons and astrocytes, combined with the extended lifespan of individuals, likely promotes AD pathology in aging humans.  相似文献   

3.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

4.
Abstract: Zinc added to buffered solutions of synthetic β-amyloid peptide (Aβ) has been reported to induce accelerated formation of insoluble aggregates. This observation suggests that zinc may play a role in the formation of senile plaques, which contain Aβ, in Alzheimer's disease. To test this hypothesis under conditions more representative of the brain, we investigated the ability of zinc to induce aggregation of Aβ in freshly drawn canine CSF, which contains the same sequence as human Aβ. Aggregates were separated from CSF by ultracentrifugation before and after incubation with zinc and assayed by quantitative western blotting and ELISA. We found that zinc induced the rapid aggregation of endogenous Aβ in CSF, with an EC50 of 120–140 µ M . The reaction was specific, because most (≥95%) CSF protein remained soluble under conditions where most Aβ was insoluble, as assayed by scanning densitometry of Coomassie-stained gels. Staining of the precipitated material resulted in the visualization of punctate regions that were thioflavin positive or birefringent when stained with Congo red, suggesting the formation of amyloid-related structures. These results suggest that zinc could play a role in amyloid deposition, because there is overlap between the regions of the brain where zinc concentrations are highest and regions with the highest amyloid content. It is surprising that zinc induced the aggregation of endogenous soluble APP at lower concentrations than required for Aβ (EC50 80 µ M ). The possibility that zinc-induced aggregation of APP may precede the deposition of Aβ into plaques is discussed. Investigation of aggregation of Aβ in CSF will aid in assessing the biological relevance of other agents that have been reported to accelerate amyloid formation.  相似文献   

5.
Abstract : In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AβPP) by the α-secretase pathway within the βA4 domain to generate a soluble secreted N-terminal fragment (AβPPs). AβPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform β1 and novel PKCε from cytosol to membrane fractions, but there was no alteration in the proportion of AβPP associated with the Tritonsoluble and -insoluble fractions. AβPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AβPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 μ M ), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AβPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the α-secretase activity leading to the secretion of AβPPs can occur at the level of the presynaptic terminal.  相似文献   

6.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

7.
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD.  相似文献   

8.
Abstract: Activation of protein kinase C (PKC) regulates the processing of Alzheimer amyloid precursor protein (APP) into its soluble form (sAPP) and amyloid β-peptide (Aβ). However, little is known about the intermediate steps between PKC activation and modulation of APP metabolism. Using a specific inhibitor of mitogen-activated protein (MAP) kinase kinase activation (PD 98059), as well as a dominant negative mutant of MAP kinase kinase, we show in various cell lines that stimulation of PKC by phorbol ester rapidly induces sAPP secretion through a mechanism involving activation of the MAP kinase cascade. In PC12-M1 cells, activation of MAP kinase by nerve growth factor was associated with stimulation of sAPP release. Conversely, M1 muscarinic receptor stimulation, which is known to act in part through a PKC-independent pathway, increased sAPP secretion mainly through a MAP kinase-independent pathway. Aβ secretion and its regulation by PKC were not affected by PD 98059, supporting the concept of distinct secretory pathways for Aβ and sAPP formation.  相似文献   

9.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

10.
Abstract: In Alzheimer's disease (AD), one of the cardinal neuropathological signs is deposition of amyloid, primarily consisting of the amyloid β-peptide (Aβ). Structural variants of AD-associated Aβ peptides have been difficult to purify by high-resolution chromatographic techniques. We therefore developed a novel chromatographic protocol, enabling high-resolution reverse-phase liquid chromatography (RPLC) purification of Aβ variants displaying very small structural differences. By using a combination of size-exclusion chromatography and the novel RPLC protocol, Aβ peptides extracted from AD amyloid were purified and subsequently characterized. Structural analysis by microsequencing and electrospray-ionization mass spectrometry revealed that the RPLC system resolved a complex mixture of Aβ variants terminating at either residue 40 or 42. Aβ variants differing by as little as one amino acid residue could be purified rapidly to apparent homogeneity. The resolution of the system was further illustrated by its ability to separate structural isomers of Aβ1–40. The present chromatography system might provide further insight into the role of N-terminally and posttranslationally modified Aβ variants, because each variant can now be studied individually.  相似文献   

11.
Abstract: The progression of Alzheimer's disease and related disorders involves amyloid β-protein (Aβ) deposition and pathologic changes in the parenchyma as well as cerebral blood vessels. The cerebrovascular Aβ deposits in these disorders are associated with degenerating smooth muscle cells in the vessel wall, which have been shown to express the Aβ precursor (AβPP) and Aβ. Here, we show that Aβ1–42, an abundant cerebrovascular form of Aβ, causes cellular degeneration in cultured human cerebrovascular smooth muscle cells. This stress response is accompanied by a striking increase in the levels of cellular AβPP and soluble Aβ peptide produced in these degenerating cells. These data provide the first experimental evidence that Aβ can potentially contribute to the onset and progression of the cerebrovascular pathology. The present findings suggest that this mechanism may involve a molecular cascade with a novel product-precursor relationship that results in the adverse production and subsequent accumulation of Aβ.  相似文献   

12.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

13.
Abstract: Proteolytic cleavage of β-amyloid precursor protein (βAPP) by α-secretase results in release of one secreted form (sAPP) of APP (sAPPα), whereas cleavage by β-secretase releases a C-terminally truncated sAPP (sAPPβ) plus amyloid β-peptide (Aβ). βAPP mutations linked to some inherited forms of Alzheimer's disease may alter its processing such that levels of sAPPα are reduced and levels of sAPPβ increased. sAPPαs may play important roles in neuronal plasticity and survival, whereas Aβ can be neurotoxic. sAPPα was ∼100-fold more potent than sAPPβ in protecting hippocampal neurons against excitotoxicity, Aβ toxicity, and glucose deprivation. Whole-cell patch clamp and calcium imaging analyses showed that sAPPβ was less effective than sAPPα in suppressing synaptic activity, activating K+ channels, and attenuating calcium responses to glutamate. Using various truncated sAPPα and sAPPβ APP695 products generated by eukaryotic and prokaryotic expression systems, and synthetic sAPP peptides, the activity of sAPPα was localized to amino acids 591–612 at the C-terminus. Heparinases greatly reduced the actions of sAPPαs, indicating a role for a heparin-binding domain at the C-terminus of sAPPα in receptor activation. These findings indicate that alternative processing of βAPP has profound effects on the bioactivity of the resultant sAPP products and suggest that reduced levels of sAPPα could contribute to neuronal degeneration in Alzhiemer's disease.  相似文献   

14.
Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca2+ from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP.  相似文献   

15.
Abstract: Conventional secretory processing of the amyloid precursor protein is nonamyloidogenic, releasing carboxyl-terminus-truncated amyloid precursor protein derivatives while cleaving the amyloid β-peptide within its sequence. Alternative processing routes are potentially amyloidogenic, yielding the amyloid β-peptide segment intact. In continuous cell lines, secretory processing of the amyloid precursor protein is regulated by both protein kinase C and muscarinic receptor stimulation. However, the first and second messenger systems that regulate amyloid precursor protein release in central neurons are still under investigation. In the present investigation, we examined whether or not first and second messengers of cholinergic neurotransmission increase production of soluble derivatives of the amyloid precursor protein in primary cultures of rat cortical neurons. Activation of protein kinase C by the phorbol esters phorbol 12,13-dibutyrate and phorbol 12-myristate 13-acetate increased production of the soluble form of the amyloid precursor protein dramatically. In contrast, activation of muscarinic receptors by oxotremorine-M or carbachol did not result in a significant increase in amyloid precursor protein release. Similarly, chemically induced depolarization using 35 m M KCI did not alter production of soluble amyloid precursor protein derivatives. Our data suggest that although protein kinase C stimulation plays an important role in regulating release of the amyloid precursor protein, cholinergic neurotransmission does not regulate its release in cultured rat cortical neurons.  相似文献   

16.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

17.
Abstract: Increasing data suggest that the amyloid β-peptide (Aβ), which accumulates in the brains of Alzheimer's victims, plays a role in promoting neuronal degeneration. Cell culture studies have shown that Aβ can be neurotoxic and recent findings suggest that the mechanism involves destabilization of cellular calcium homeostasis. We now report that cytochalasin D, a compound that depolymerizes actin microfilaments selectively, protects cultured rat hippocampal neurons against Aβ neurotoxicity. Cytochalasin D was effective at concentrations that depolymerized actin (10–100 n M ). The elevation of [Ca2+]i induced by Aβ, and the enhancement of [Ca2+]i responses to glutamate in neurons exposed to Aβ, were markedly attenuated in neurons pretreated with cytochalasin D. The protective effect of cytochalasin D appeared to result from a specific effect on actin filaments and reduction in calcium influx, because cytochalasin E, another actin filament-disrupting agent, also protected neurons against Aβ toxicity; the microtubule-disrupting agent colchicine was ineffective; cytochalasin D did not protect neurons against the toxicity of hydrogen peroxide. These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease.  相似文献   

18.
Alzheimer's disease (AD) is thought by many to result from the accumulation of the neurotoxic amyloid-β (Aβ) peptide in brain parenchyma. The process by which Aβ is proteolytically derived from the larger amyloid precursor protein (APP) has been the focus of much attention in the AD research field over the past decade. Recently, several of the proteins directly involved in the generation of Aβ have been identified and characterized providing a number of viable therapeutic targets for the treatment of AD. However, the cellular mechanisms by which these proteins interact in the proteolytic processing of APP have not been well defined, nor are they readily apparent when one considers what is known about the intracellular localization and trafficking of the various participants. This article will review the underlying cell biology of Aβ production and discuss the mechanistic options for APP processing given the current knowledge of the proteases involved.  相似文献   

19.
Abstract: Extracellular amyloid β-peptide (Aβ) deposition is a pathological feature of Alzheimer's disease and the aging brain. Intracellular Aβ accumulation is observed in the human muscle disease, inclusion body myositis. Aβ has been reported to be toxic to neurons through disruption of normal calcium homeostasis. The pathogenic role of Aβ in inclusion body myositis is not as clear. Elevation of intracellular calcium following application of calcium ionophore increases the generation of Aβ from its precursor protein (βAPP). A receptor-based mechanism for the increase in Aβ production has not been reported to our knowledge. Here, we use caffeine to stimulate ryanodine receptor (RYR)-regulated intracellular calcium release channels and show that internal calcium stores also participate in the genesis of Aβ. In cultured HEK293 cells transfected with βAPP cDNA, caffeine (5–10 m M ) significantly increased the release of Aβ fourfold compared with control. These actions of caffeine were saturable, modulated by ryanodine, and inhibited by the RYR antagonists ruthenium red and procaine. The calcium reuptake inhibitors thapsigargin and cyclopiazonic acid potentiated caffeine-stimulated Aβ release. NH4Cl and monensin, agents that alter acidic gradients in intracellular vesicles, abolished both the caffeine and ionophore effects. Immunocytochemical studies showed some correspondence between the distribution patterns of RYR and cellular βAPP immunoreactivities. The relevance of these findings to Alzheimer's disease and inclusion body myositis is discussed.  相似文献   

20.
Abstract: Steroid hormones, particularly estrogens and glucocorticoids, may play roles in the pathogenesis of neurodegenerative disorders, but their mechanisms of action are not known. We report that estrogens protect cultured hippocampal neurons against glutamate toxicity, glucose deprivation, FeSO4 toxicity, and amyloid β-peptide (Aβ) toxicity. The toxicity of each insult was significantly attenuated in cultures pretreated for 2 h with 100 n M -10 µ M 17β-estradiol, estriol, or progesterone. In contrast, corticosterone exacerbated neuronal injury induced by glutamate, FeSO4, and Aβ. Several other steroids, including testosterone, aldosterone, and vitamin D, had no effect on neuronal vulnerability to the different insults. The protective actions of estrogens and progesterone were not blocked by actinomycin D or cycloheximide. Lipid peroxidation induced by FeSO4 and Aβ was significantly attenuated in neurons and isolated membranes pretreated with estrogens and progesterone, suggesting that these steroids possess antioxidant activities. Estrogens and progesterone also attenuated Aβ- and glutamate-induced elevation of intracellular free Ca2+ concentrations. We conclude that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号