首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isometric twitch characteristics and biochemical parameters of isolated myosin and sarcoplasmic reticulum have been compared in three cat hind limb muscles. The fast twitch caudofemoralis and the slow twitch soleus are almost pure muscles as judged from histochemical studies. Isolated myosin from the caudofemoralis is not only 2- to 3-fold higher in its ATPase activities than that of the soleus, but also in non-dissociated forms has greater electrophoretic mobility than the soleus myosin. Purified myosins from fast muscles as well as soleus exhibited three light chains upon electrophoresis. However, the intact non-solubilized myosins differed in electrophoretic mobilities. The sarcoplasmic reticulum fraction isolated from caudfemoralis exhibits faster rates of Ca++ binding and uptake than soleus, and when fit to a two component model, the caudofemoralis SR exhibits a higher amount of a fast binding site than does soleus SR, features reflected in differences in the relaxation time of the two muscles. In contrast, the fast twitch tibialis anterior has been shown to be a gradient of fiber types and its isometric twitch may be separated by selective nerve stimulation, into a fast and a slow twitch component. Our findings that myosin fractions, as well as sarcoplasmic reticulum fractions isolated from these two components differ with respect to their biochemical characteristics add support to the possibility of a dual function in this muscle.  相似文献   

2.
Summary The volume and surface area of mitochondria and sarcoplasmic reticulum in fast and slow twitch fibres of the cat triceps surae muscle were determined from thin sections. The width of the Z-line and the array of glycogen granules identified fast and slow twitch fibres.The relative volume occupied by mitochondria was largest in slow twitch gastrocnemius fibres. Fast twitch fibres showed the greatest scatter of mitochondrial content. This corresponds with the fact that motor units of the fast twitch type differ most with respect to resistance to fatigue.The relative volume of the sarcoplasmic reticulum was twice as large in fast as in slow twitch fibres. The volume fraction occupied by longitudinal tubules of the reticulum was the same in fast and slow twitch gastrocnemius fibres but was only half as large in the slow twitch soleus fibres. This difference may be related to post-tetanic potentiation: this property is present in all gastrocnemius fibres but is absent in soleus fibres.The specific tetanic force is 3 to 5 times smaller in slow twitch gastrocnemius than in slow twitch soleus fibres or fast gastrocnemius fibres. There was, however, no detectable morphological difference that might be related to this difference in force.Freeze fractures demonstrated directly that, in soleus fibres, terminal cisternae and longitudinal tubules of the reticulum were scarce as compared to gastrocnemius fibres. The plasma membranes of some gastrocnemius fibres displayed square arrays of 60-nm particles; these arrays were absent in other gastrocnemius fibres and in all soleus fibres. They probably characterize plasma membranes of fast twitch fibres.This study was supported by grants from the Danish Medical Research Council. I wish to thank Mrs. M. Bjærg for valuable technical help  相似文献   

3.
1. Muscle samples from the M. gluteus medius were obtained from six Quarter Horses (QH), six Thoroughbreds (TB), and five Standardbreds (SB) to determine carnosine values and fiber type percentages. 2. Muscle biopsies were for fiber type percentages and carnosine concentration. 3. QH had a lower percentage of slow twitch oxidative fibers and a higher percentage of past twitch glycolytic fibers than SB or TB. 4. Fast twitch oxidative-glycolytic fibers were lowest in the QH. 5. The QH had mean carnosine values significantly greater (P less than 0.01) than the mean values for SB and TB. 6. Across breeds muscle carnosine concentration was positively correlated (P less than 0.05; r = 0.53) with fast twitch glycolytic fiber percentage and negatively correlated (P less than 0.05, r = -0.51) with fast twitch oxidative fiber percentage. 7. Free intramuscular carnosine is believed to function as an intracellular buffer. Since carnosine was highest in the muscle of horses with the greatest percentage of fast twitch glycolytic fibers, these data are consistent with the proposed function of this dipeptide.  相似文献   

4.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

5.
Summary Potassium (K-) contractures were recorded from slow-twitch (mouse soleus) and fast-twitch (mouse extensor digitorum longus (EDL) and rat sternomastoid) muscles. The mouse limb muscles responded to a maintained increase in external potassium concentration with a rapid increase in tension (fast contracture) which inactivated and was followed by a slow contracture. Rat sternomatoid muscles responded with fast contractures only. The threshold potassium concentration for contraction was higher in fast-twitch muscles than in soleus muscles, at 22 and at 37°C. After corrections had been made for the more rapid depolarization of soleus fibers, the threshold potential for soleus fiber contraction was 15 mV closer to the resting membrane potential than the threshold for fast-twitch fiber contraction. The K-contracture results were confirmed by two microelectrode voltage-clamp experiments. Activation of fast twitch fibers required depolarizing pulses that were 15 to 20 mV greater than the pulses required to activate soleus fibers. When the time courses of K-contractures were compared it was evident that inactivation with prolonged depolarization was much faster in the fast-twitch muscles than in the soleus muscles. The results suggest that the voltage dependence and kinetics of the process coupling T-tubule depolarization with calcium release from the sarcoplasmic reticulum may depend on fiber type in mammalian skeletal muscle.  相似文献   

6.
mRNAs extracted from rabbit soleus, normal and 28-day, indirectly stimulated tibialis anterior muscles were translated in an in vitro system. Analysis for translation products by 2-dimensional electrophoresis showed fast myosin light chains in tibialis anterior, and slow myosin light chains in soleus muscle. The stoichiometry of the in vitro translated light chain varies from that seen in normal fast and slow twitch muscles. The stimulated muscle contained mRNA coding, both for fast and slow myosin light chains, although the pattern of slow myosin light chains appears not to be complete at this point of time of the transformation process.  相似文献   

7.
Decomposition of phosphoenzyme (E approximately P) in sarcoplasmic reticulum isolated from caudofemoralis, tibialis and soleus of cat hind leg skeletal muscles was studied under various conditions of monovalent cations. In the presence of Li+, Na+, and K+ chosen for E approximately P formation and decomposition after quenching of E approximately P with EGTA, E approximately P in the caudofemoralis and tibialis sarcoplasmic reticulum decomposed faster than that in the soleus sarcoplasmic reticulum. Quenching the E approximately P formation with EGTA and ADP revealed that 30-40% of the total E approximately P formed in all types of sarcoplasmic reticulum was 'ADP sensitive'. Decomposition of the remaining E approximately P in caudofemoralis and tibialis sarcoplasmic reticulum was enhanced by ADP, which resulted in a multiphasic decomposition pattern. A larger portion of the remaining E approximately P in the soleus sarcoplasmic reticulum, on the other hand decomposed in a monophasic manner and was not significantly influenced by ADP. The data on E approximately P decomposition clearly differentiate between the fast and slow muscle types.  相似文献   

8.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

9.
The ESR spectra from different positional isomers of sphingomyelin and phosphatidylcholine spin-labeled in their acyl chain have been studied in sphingomyelin(cerebroside)-phosphatidylcholine mixed membranes that contain cholesterol. The aim was to investigate mechanisms by which cholesterol could stabilize possible domain formation in sphingolipid-glycerolipid membranes. The outer hyperfine splittings in the ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled on the 5 C atom of the acyl chain were consistent with mixing of the components, but the perturbations on adding cholesterol were greater in the membranes containing sphingomyelin than in those containing phosphatidylcholine. Infrared spectra of the amide I band of egg sphingomyelin were shifted and broadened in the presence of cholesterol to a greater extent than the carbonyl band of phosphatidylcholine, which was affected very little by cholesterol. Two-component ESR spectra were observed from lipids spin-labeled on the 14 C atom of the acyl chain in cholesterol-containing membranes composed of sphingolipids, with or without glycerolipids (sphingomyelin/cerebroside and sphingomyelin/cerebroside/phosphatidylcholine mixtures). These results indicate the existence of gel-phase domains in otherwise liquid-ordered membranes that contain cholesterol. In the gel phase of egg sphingomyelin, the outer hyperfine splittings of sphingomyelin spin-labeled on the 14-C atom of the acyl chain are smaller than those for the corresponding spin-labeled phosphatidylcholine. In the presence of cholesterol, this situation is reversed; the outer splitting of 14-C spin-labeled sphingomyelin is then greater than that of 14-C spin-labeled phosphatidylcholine. This result provides some support for the suggestion that transbilayer interdigitation induced by cholesterol stabilizes the coexistence of gel-phase and "liquid-ordered" domains in membranes containing sphingolipids.  相似文献   

10.
Taitzer Wang  Arnold Schwartz 《BBA》1981,638(2):341-344
Decomposition of phosphoenzyme (E P) in sarcoplasmic reticulum isolated from caudofemoralis, tibialis and soleus of cat hind leg skeletal muscles was studied under various conditions of monovalent cations. In the presence of Li+, Na+ and K+ chosen for E P formation and decomposition after quenching of E P with EGTA, E P in the caudofemoralis and tibialis sarcoplasmic reticulum decomposed faster than that in the soleus sarcoplasmic reticulum. Quenching the E P formation with EGTA and ADP revealed that 30–40% of the total E P formed in all types of sarcoplasmic reticulum was ‘ADP sensitive’. Decomposition of the remaining E P in caudofemoralis and tibialis sarcoplasmic reticulum was enhanced by ADP, which resulted in a multiphasic decomposition pattern. A larger portion of the remaining E P in the soleus sarcoplasmic reticulum, on the other hand, decomposed in a monophasic manner and was not significantly influenced by ADP. The data on E P decomposition clearly differentiate between the fast and slow muscle types.  相似文献   

11.
Fast (extensor digitorum longus) and slow (soleus) rat skeletal muscles served as the source for isolation and biochemical comparison of two distinct surface membrane fractions with properties of the sarcolemma and transverse tubular system. Enriched sarcolemmal membrane from soleus demonstrated a lighter density after sucrose density centrifugation. Sialic acid content was 1.5-fold higher in soleus (62 nmol/mg) than extensor (40 nmol/mg). The specific activity of (Na+ + K+ + Mg2+)-ATPase was similar (1.40 and 1.65 micronmol Pi/mg per 5 min) with the soleus enzyme displaying a (1) greater resistance to inhibition by ouabain, and (2) broader ionic ratio (Na+/K+) requirement than extensor enzyme. The polypeptide and phospholipid composition showed no major differences between the two muscle types. The second surface membrane fraction, tentatively identified as transverse tubule, differed in membrane composition. The major polypeptide of extensor was of 95 000 molecular weight whereas for soleus a Mr=28 000 species was dominant. Total phospholipid content of soleus was 1.5-fold greater than extensor due mostly to increased levels of phosphatidylcholine and phosphatidylethanolamine. Endogenous membrane protein kinase for the 28 000 molecular weight polypeptide was found exclusively in this membrane. The reaction conditions were identical for extensor and soleus since both required divalent cations (Ca2+ and Mg2+) and neither was affected by cyclic AMP. Soleus showed a 2-fold higher capacity for phosphate incorporation than extensor. These studies show that surface membrane fractions derived from fast and slow muscles differ in terms of functional and compositional properties. These differences are specific not only for the surface membrane but for the muscle type and may relate to the known physiological differences observed between fast and slow mammalian muscle.  相似文献   

12.
Four selected leg muscles (gastrocnemius, soleus, vastus lateralis and intermedius) from thirty-two humans were autopsied within 25 hr of death and examined histochemically.The results of histochemical myofibrillar adenosine triphosphatase activity demonstrated that the soleus and vastus intermedius muscles have a higher proportion of slow twitch fibres (70%, 47%) than their synergists, gastrocnemius and vastus lateralis, respectively.The gastrocnemius contains about 50% slow twitch fibres and the vastus lateralis about 32%. Similar proportions of slow and fast twitch fibres have been reported for these hindlimb muscles in other mammals. Human muscles, however, differ from other mammalian muscles in that the proportion of slow and fast twitch fibres were similar in the superficial and deep regions of the muscles examined. Fast twitch oxidative glycolytic fibres in sedentary humans were observed less frequently, and they are less prominent in terms ofoxidative enzymatic activity when compared to similar fibres of several laboratory mammals studied previously.  相似文献   

13.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

14.
Post-tetanic potentiation was measured in motor units, isolated functionally by ventral root splitting, of soleus and extensor digitorum longus muscles of mouse. All motor units from the extensor digitorum longus had times to peak twitch tension less than 13 ms; there was a linear relationship between time to peak tension and post-tetanic potentiation, with the faster units exhibiting greater potentiation. When soleus motor units were similarly analyzed, it appeared that there may be two distinct populations of units. Those units with times to peak tension less than 13 ms were virtually indistinguishable from those of extensor digitorum longus. On the other hand, the slope of the relationship between post-tetanic potentiation and time to peak tension was significantly lower for soleus units with times to peak tension of 13 ms or more. Approximately three-quarters of the soleus units were of the latter slow type, whereas only one-half of the muscle fibres could be classified as type I by means of immunohistochemistry, suggesting that the myosin heavy chain may not be the major determinant of post-tetanic potentiation. Single, chemically skinned fibres of soleus were analyzed for myosin heavy and light chain components by polyacrylamide gel electrophoresis. All fibres with type I heavy chain contained only the two slow light chains. On the other hand, almost all of the fibres with type IIA myosin heavy chain contained both fast and slow light chains. It is suggested that the discrepancy between the proportions of physiologically "fast" motor units and histochemical type IIA fibres may be the consequence of variable amounts of slow light chain associated with the fast IIA myosin heavy chain.  相似文献   

15.
The effect of fiber type and endurance exercise training on skeletal muscle beta-adrenoceptor properties were assessed using a direct radioligand binding technique. Six separate muscles, composed of a variety of different fiber types, were examined in treadmill trained and sedentary rats. In trained animals, sarcolemmal preparations from heart and slow twitch soleus muscle exhibited a significantly greater receptor concentration than membranes from white fast twitch glycolytic fibers of the vastus lateralis. No significant changes were observed between trained and sedentary rat muscle beta-adrenoceptor density (beta max, fmole/mg protein) or affinity (Kd, nM) within each muscle type, despite significantly increased myocardial/body weight ratios and skeletal muscle enzyme adaptations associated with the exercise program. These results suggest that muscle beta-adrenoceptor properties may be influenced in part by the motor nerve innervation to that muscle, and are further discussed with respect to a possible relationship between exercise intensity and receptor regulation.  相似文献   

16.
目的:探讨去负荷后小鼠比目鱼肌的收缩特性与骨骼肌纤维类型转化之间的关系。方法:采用离体肌肉灌流技术和电刺激方法,在小鼠后肢去负荷28 d引起骨骼肌萎缩后,观察比目鱼肌单收缩、强直收缩能力和肌疲劳指标等收缩特性的改变,同时利用组织免疫荧光染色和实时定量聚合酶链式反应(real-time PCR)等技术检测去负荷后比目鱼肌快慢肌纤维组成和纤维类型转化的变化。结果:去负荷28 d后,小鼠比目鱼肌单收缩力、强直收缩能力和疲劳指数(fatigue index)均有显著性下降,同时伴有快肌纤维亚型的增加和慢肌纤维亚型的减少。结论:去负荷28 d后小鼠比目鱼肌收缩特性的改变和快慢肌纤维类型的转化有关。  相似文献   

17.
Summary Male Wistar rats were made hypothyroid or hyperthyroid over a period of six weeks, by administration of carbimazole or triiodothyronine (T3). Serial frozen sections of soleus and extensor digitorum longus (EDL) muscle were stained histochemically for myosin ATPase, succinic dehydrogenase and phosphorylase. Muscle fibres were classified as either slow twitch oxidative (SO), fast twitch oxidative glycolytic (FOG) or fast twitch glycolytic (FG). In addition the activities of phosphorylase, phosphofructokinase (PFK), fructose-1,6-diphosphatase (FDP), lactate dehydrogenase (LDH), hexokinase, citrate synthetase, cytochrome oxidase, 3-hydroxyacyl-CoA dehydrogenase (HAD) and 5-AMP aminohydrolase were measured in both muscles.Increasing plasma levels of T3 are associated with marked alterations in the fibre type populations in both muscles. In the soleus there is conversion of SO to FOG fibres while in the EDL, FG fibres are converted to FOG fibres. The quantitative changes in metabolic enzyme activity however, are in the main restricted to the soleus. Increased T3 levels result in an increased capacity for the aerobic metabolism of both fat and carbohydrate and an increase in anaerobic glycolytic activity in the soleus muscle which parallels the change in fibre types. However, the extent of these increases cannot be explained solely on this basis and there is also an overall increase in aerobic activity in all fibres including slow oxidative ones. It is concluded that the effects of thyroid hormone on muscle phenotype and respiratory capacity involve both primary and secondary sites of action and the possible mechanisms are discussed.Abbreviations EDL extensor digitorum longus - FDP fructose-1,6-diphosphatase - FG fast twitch glycolytic - FOG fast twitch oxidative glycolytic - HAD 3-hydroxyacyl-CoA-dehydrogenase - LDH lactate dehydrogenase - PFK phosphofructokinase - SO slow twitch oxidative - T 3 triiodothyronine - T 4 thyroxine  相似文献   

18.
The role of high density lipoprotein (HDL) phospholipid in scavenger receptor BI (SR-BI)-mediated free cholesterol flux was examined by manipulating HDL(3) phosphatidylcholine and sphingomyelin content. Both phosphatidylcholine and sphingomyelin enrichment of HDL enhanced the net efflux of cholesterol from SR-BI-expressing COS-7 cells but by two different mechanisms. Phosphatidylcholine enrichment of HDL increased efflux, whereas sphingomyelin enrichment decreased influx of HDL cholesterol. Although similar trends were observed in control (vector-transfected) COS-7 cells, SR-BI overexpression amplified the effects of phosphatidylcholine and sphingomyelin enrichment of HDL 25- and 2.8-fold, respectively. By using both phosphatidylcholine-enriched and phospholipase A(2)-treated HDL to obtain HDL with a graded phosphatidylcholine content, we showed that SR-BI-mediated cholesterol efflux was highly correlated (r(2) = 0.985) with HDL phosphatidylcholine content. The effects of varying HDL phospholipid composition on SR-BI-mediated free cholesterol flux were not correlated with changes in either the K(d) or B(max) values for high affinity binding to SR-BI. We conclude that SR-BI-mediated free cholesterol flux is highly sensitive to HDL phospholipid composition. Thus, factors that regulate cellular SR-BI expression and the local modification of HDL phospholipid composition will have a large impact on reverse cholesterol transport.  相似文献   

19.
The appearance of collagen around individual fast twitch (FT) and slow twitch (ST) muscle fibres was investigated in skeletal muscles with different contractile properties using endurance trained and untrained rats as experimental animals. The collagenous connective tissue was analyzed by measuring hydroxyproline biochemically and by staining collagenous material histochemically in M. soleus (MS), M. rectus femoris (MRF), and M. gastrocnemius (MG). The concentration of hydroxyproline in the ST fibres dissected from MS (2.72 +/- 0.35 micrograms X mg-1 d.w.) was significantly higher than that of the FT fibres dissected from MRF (1.52 +/- 0.33 micrograms X mg-1 d.w.). Similarly, the concentration of hydroxyproline was higher in ST (2.54 +/- 0.51 micrograms X mg-1 d.w.) than in FT fibres (1.60 +/- 0.43 micrograms X mg-1 d.w.), when the fibres were dissected from the same muscle, MG. Histochemical staining of collagenous material agreed with the biochemical evidence that MS and the slow twitch area of MG are more collagenous than MRF and the fast twitch area of MG both at the level of perimysium and endomysium. The variables were not affected by endurance training. When discussing the role of collagen in the function of skeletal muscle it is suggested that the different functional demands of different skeletal muscles are also reflected in the structure of intramuscular connective tissue, even at the level of endomysial collagen. It is supposed that the known differences in the elastic properties of fast tetanic muscle compared to slow tonic muscle as, e.g., the higher compliance of fast muscle could at least partly be explained in terms of the amount, type, and structure of intramuscular collagen.  相似文献   

20.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号