首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel–dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro‐computed tomography was employed to non‐destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Physical anthropologists often use nonmetric dental traits to trace the movement of human populations, but similar analysis of the teeth of nonhuman primates or the deciduous teeth is rare. Because nonmetric dental characteristics are manifestations of genetic differences among groups, they vary among geographically distant members of the same species and subspecies. We use 28 nonmetric dental traits in the deciduous molars to compare genetically and geographically distinct groups of extant African apes (Gorilla and Pan). Previous researchers have studied these traits in the adult or juvenile teeth of great apes and humans, and we score our observations according to established standards for hominins. We observe marked differences in trait frequencies between Gorilla and Pan, Pan troglodytes and P. paniscus, and two P. troglodytes subspecies but we find no significant differences between geographically isolated groups within the subspecies. Trait frequencies differ from those found in previous studies that contained fewer individuals. We find that the deciduous molars show similar variation to adult premolars and molars within Pan and Gorilla. This suggests that the deciduous dentition of these and other apes may contain diagnostic traits that are not currently in use.  相似文献   

3.
Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown‐aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct‐age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
A chronology of dental development in Pan troglodytes is arguably the best available model with which to compare and contrast reconstructed dental chronologies of the earliest fossil hominins. Establishing a time scale for growth is a requirement for being able to make further comparative observations about timing and rate during both dento-skeletal growth and brain growth. The absolute timing of anterior tooth crown and root formation appears not to reflect the period of somatic growth. In contrast, the molar dentition best reflects changes to the total growth period. Earlier initiation of molar mineralization, shorter crown formation times, less root length formed at gingival emergence into functional occlusion are cumulatively expressed as earlier ages at molar eruption. Things that are similar in modern humans and Pan, such as the total length of time taken to form individual teeth, raise expectations that these would also have been the same in fossil hominins. The best evidence there is from the youngest fossil hominin specimens suggests a close resemblance to the model for Pan but also hints that Gorilla may be a better developmental model for some. A mosaic of great ape-like features currently best describes the timing of early hominin dental development.  相似文献   

5.
Buccal microwear patterns on teeth are good indicators of the abrasiveness of foodstuffs and have been used to trace the dietary habits of fossil species, including primates and hominids. However, few studies have addressed the variability of this microwear. The abrasiveness of dietary components depends not only on the hardness of the particles ingested, but also on the presence of dust and other exogenous elements introduced during food processing. These elements are responsible for the microwear typology observed on the enamel surfaces of primate teeth. Here we analyzed the variability of buccal microwear patterns in African Great Apes (Gorilla gorilla and Pan troglodytes), using tooth molds obtained from the original specimens held in several osteological collections. Our results suggest that ecological adaptations at subspecies or population level account for differences in microwear patterns, which are attributed to habitat and ecological conditions within populations rather than differences between species. The findings from studies on the variability of buccal dental microwear in extant species will contribute to a better understanding of extinct hominids’ diet and ecology.  相似文献   

6.
The African apes possess thinner enamel than do other hominoids, and a certain amount of dentin exposure may be advantageous in the processing of tough diets eaten by Gorilla. Dental wear (attrition plus abrasion) that erodes the enamel exposes the underlying dentin and creates additional cutting edges at the dentin‐enamel junction. Hypothetically, efficiency of food processing increases with junction formation until an optimal amount is reached, but excessive wear hinders efficient food processing and may lead to sickness, reduced fecundity, and death. Occlusal surfaces of molars and incisors in three populations each of Gorilla and Pan were videotaped and digitized. The quantity of incisal and molar occlusal dental wear and the lengths of dentin–enamel junctions were measured in 220 adult and 31 juvenile gorilla and chimpanzee skulls. Rates of dental wear were calculated in juveniles by scoring the degree of wear between adjacent molars M1 and M2. Differences were compared by principal (major) axis analysis. ANOVAs compared means of wear amounts. Pearson correlation coefficients were calculated to compare the relationship between molar wear and incidence of dental disease. Results indicate that quantities of wear are significantly greater in permanent incisors and molars and juvenile molars of gorillas compared to chimpanzees. The lengths of dentin–enamel junctions were predominantly suboptimal. Western lowland gorillas have the highest quantities of wear and the most molars with suboptimal wear. The highest rates of wear are seen in Pan paniscus and Pan t. troglodytes, and the lowest rates are found in P.t. schweinfurthii and G. g. graueri. Among gorillas, G. b. beringei have the highest rates but low amounts of wear. Coefficients between wear and dental disease were low, but significant when all teeth were combined. Gorilla teeth are durable, and wear does not lead to mechanical senescence in this sample. Am. J. Primatol. 72:481–491, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Detailed comparisons of the postcranium, cranium, and dentition of Pan paniscus, Pan troglodytes, and Homo reveal that except for slight differences in fore- and hindlimb proportions and the morphology of the shoulder, the postcranium of the two species of Pan are allometrically scaled variants of the same animal and one does not resemble Homo more than the other. Nor does the postcranium of one species of Pan resemble Australopithecus more closely than the other when the effects of body size are controlled. The over all morphological pattern of the skull and teeth of the two chimpanzees is clearly different, however, but both are about equally distinct from the earliest known members of the family Hominidae.  相似文献   

8.
The mitochondrial DNA D-Loop region was sequenced, analyzed and used as a molecular marker for populations of chimpanzee (Pan troglodytes), bonobo (P. paniscus) and gorilla (Gorilla gorilla and G. beringei), and also compared with data previously reported for these taxa. In Gorilla, a main disjunction between western (G. gorilla) and eastern (G. beringei, including G. b. graueri) species was observed, as well as high mitochondrial diversity within the western species. The genetic distance values within G. gorilla (0.14) were higher than those between subspecies (eastern lowland and mountain 0.12). Likewise, values of genetic diversity within this species (0.05) were higher than those between species (western and eastern lowland gorilla 0.04). Similarly, in genus Pan a main differentiation between western (P. t. verus) and central forms (P. t. troglodytes and P. t. schweinfurthii) was observed. The obtained values of genetic distance and genetic diversity revealed that the central subspecies are closer to each other than either of them is to the western one, while bonobos composed a distinct clade that expresses a well-defined specific identity. The current distribution, phylogeny and levels of genetic diversity in African great ape populations are consistent with the hypothesis that Pleistocene climatic events led to cyclical periods of isolation in forest refugia followed by expansion and dispersal. The implications of this high level of genetic diversity for taxonomic classification, wildlife management and conservation are discussed.  相似文献   

9.
Predatory behavior ofPan t. troglodytes in the Ndoki Forest was confirmed by both direct observation and fecal evidence. Eight out of 214 fecal samples (3.7%), collected during 16 months, contained vertebrate tissue. The prey species were a terrestrial bird, two monkey species including crowned guenon, a squirrel, and probably a pangolin. This rate suggested that predation in the Ndoki population can occur as frequently as in other populations. Chimpanzees were also directly observed to eat an infant crowned guenon, a hornbill, and a duiker. An adult female used a branch apparently in an attempt to drive out a hornbill from its nest hole, though no bird was observed to come out. Chimpanzees were attracted to meat, and were observed begging and sharing over the meat. Predatory behavior is common toPan andHomo, but not toGorilla, implying that the common ancestor of the former two genera acquired this behavior after separating from gorillas.  相似文献   

10.
Chimpanzees (Pan troglodytes) and bonobos (P. paniscus) are our closest living relatives, with the human lineage diverging from the Pan lineage only around five to seven Mya, but possibly as early as eight Mya.1–2 Chimpanzees and bonobos even share genetic similarities with humans that they do not share with each other.2 Given their close genetic relationship to humans, both Pan species represent crucial living models for reconstructing our last common ancestor (LCA) and identifying uniquely human features. Comparing the similarities and differences of the two Pan is thus essential for constructing balanced models of human evolution.3  相似文献   

11.
The great apes and gibbons are characterized by extensive variation in degree of body size and cranial dimorphism, but although some studies have investigated how sexual dimorphism in body mass is attained in these species, for the majority of taxa concerned, no corresponding work has explored the full extent of how sexual dimorphism is attained in the facial skeleton. In addition, most studies of sexual dimorphism combine dentally mature individuals into a single “adult” category, thereby assuming that no substantial changes in size or dimorphism take place after dental maturity. We investigated degree and pattern of male and female facial growth in Pan troglodytes troglodytes, Pan paniscus, Gorilla gorilla gorilla, Pongo pygmaeus, and Hylobates lar after dental maturity through cross-sectional analyses of linear measurements and geometric mean values of the facial skeleton and age-ranking of individuals based on molar occlusal wear. Results show that overall facial size continues to increase after dental maturity is reached in males and females of Gorilla gorilla gorilla and Pongo pygmaeus, as well as in the females of Hylobates lar. In male Pongo pygmaeus, adult growth patterns imply the presence of a secondary growth spurt in craniofacial dimensions. There is suggestive evidence of growth beyond dental maturity in the females of Pan troglodytes troglodytes and Pan paniscus, but not in the males of those species. The results show the presence of statistically significant facial size dimorphism in young adults of Pan paniscus and Hylobates lar, and of near statistical significance in Pan troglodytes troglodytes, but not in older adults of those species; adults of Gorilla gorilla gorilla and Pongo pygmaeus are sexually dimorphic at all ages after dental maturity. The presence of sex-specific growth patterns in these hominoid taxa indicates a complex relationship between socioecological selective pressures and growth of the facial skeleton.  相似文献   

12.
The timing of tooth mineralization in bonobos (Pan paniscus) is virtually uncharacterized. Analysis of these developmental features in bonobos and the possible differences with its sister species, the chimpanzee (P. troglodytes), is important to properly quantify the normal ranges of dental growth variation in closely related primate species. Understanding this variation among bonobo, chimpanzee and modern human dental development is necessary to better contextualize the life histories of extinct hominins. This study tests whether bonobos and chimpanzees are distinguished from each other by covariance among the relative timing and sequences of tooth crown initiation, mineralization, root extension, and completion. Using multivariate statistical analyses, we compared the relative timing of permanent tooth crypt formation, crown mineralization, and root extension between 34 P. paniscus and 80 P. troglodytes mandibles radiographed in lateral and occlusal views. Covariance among our 12 assigned dental scores failed to statistically distinguish between bonobos and chimpanzees. Rather than clustering by species, individuals clustered by age group (infant, younger or older juvenile, and adult). Dental scores covaried similarly between the incisors, as well as between both premolars. Conversely, covariance among dental scores distinguished the canine and each of the three molars not only from each other, but also from the rest of the anterior teeth. Our study showed no significant differences in the relative timing of permanent tooth crown and root formation between bonobos and chimpanzees. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
I review information on the status in the wild of the robust chimpanzee, Pan troglodytes, and consider whether this evidence is consistent with the designation of P. troglodytes as Endangered in the International Union for the Conservation of Nature and Natural Resources (IUCN) Red List, and with public statements to the effect that great apes as a whole will be extinct within a few decades. Chimpanzees remain widespread in tropical Africa, occurring in a variety of forested habitats. Estimates of total surviving numbers have increased from about 200,000 in the 1980s to a maximum of almost 300,000 in 2003. However, this apparent increase comes about from new survey data, rather than representing a measured increase in actual population numbers. Infectious disease decimated several chimpanzee populations during the 1990s, and data from parts of Gabon, extrapolated to that country as a whole, suggest a major decline in great ape populations caused by disease and hunting. However, accurate data on population numbers are absent for the majority of wild chimpanzee populations. I found reports of the presence of Pan troglodytes in at least 51 national parks in at least 19 countries; some of these parks have been established very recently. Chimpanzees also occur in many non-park conservation areas. A set of large, well-protected parks could safeguard chimpanzees for the foreseeable future. Although many African parks do not function well at present, mechanisms to improve their function are understood and available. By a strict application of IUCN threat criteria, P. troglodytes can be considered Endangered, based on estimated rates of past decline and on the species long generation time. Relatively speaking, however, P. troglodytes is less endangered than are orangutans or gorillas, and the species is unlikely to go extinct by the year 2100, especially if existing conservation measures improve. The IUCN threat-rating system has become overly complex; the system can produce results that do not accord with common sense and these results must therefore be interpreted with care.  相似文献   

14.
The postcranial sample ofA. afarensis can be divided into two size groups. Among the best preserved elements which are represented by both morphs are the distal femur, proximal ulna, and capitate. The difference between the large and small fossil femora is similar to the difference between average male and femaleG. gorilla andP. pygmaeus. The distal femora ofH. sapiens are less sexually dimorphic while those ofP. paniscus, P. troglodytes, andH. lar are not significantly dimorphic at all. Large and small capitates and proximal ulnae ofA. afarensis differ slightly more than the highly dimorphic species of extant Hominoidea. In my sample of Amerindians, the capitate and proximal ulna are also strongly dimorphic. The two species ofPan have insignificant sexual dimorphism in these traits. There results imply that strong sexual dimorphism in body size is the primitive condition for the large bodied hominoids.  相似文献   

15.
Considerable attention has been devoted to understanding phalangeal curvature in primates, particularly with regard to locomotion. Previous work has found that increased phalangeal curvature may be indicative of increased grasping during suspensory and climbing behaviors, but the details of this relationship, particularly as regards feet, is still unclear. Using behavioral studies to predict an interspecific gradient of variation in pedal phalangeal curvature, I collected digital data from the third and fifth digit proximal pedal phalanges in adult Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus and calculated included angles of phalangeal curvature to assess the appropriateness of pooling digits within taxa and evaluate the association between variation in pedal phalangeal curvature and frequency of climbing behavior. I also used an ontogenetic sample of Pan troglodytes to evaluate the postnatal relationship between variation in phalangeal curvature and grasping behaviors. I found intraspecific variation in phalangeal curvature suggesting among-digit variation in grasping behaviors. Curvature of Pongo was significantly greater than of both Pan and Gorilla. In contrast, Pan was significantly more curved than Gorilla only in comparison of third digits. Ontogenetic decreases in pedal phalangeal curvature among Pan troglodytes accorded well with postnatal decreases in documented climbing frequency. These findings largely support earlier work regarding the association between arboreal grasping and phalangeal curvature, and provide a unique intraspecific analysis that illuminates a number of areas where our knowledge of the behavioral and biomechanical determinants of phalangeal curvature should be explored further, particularly with respect to the role of among-digit variation in phalangeal curvature.  相似文献   

16.
Analyses of buccal tooth microwear have been used to trace dietary habits of modern hunter-gatherer populations. In these populations, the average density and length of striations on the buccal surfaces of teeth are significantly cor-related with the abrasive potential of food items consumed. In non-human pri-mates, tooth microwear patterns on both occlusal and buccal wear facets have been thoroughly studied and the results applied to the characterization of dietary habits of fossil species. In this paper, we present inter- and intra-specific buccal microwear variability analyses in extant Cercopithecoidea (Cercopithecus mitis, C. neglectus, Chlorocebus aethiops, Colobus spp., Papio anubis) and Hominoidea (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). The results are tentatively compared to buccal microwear patterns of the Miocene fossils Dryopithecus and Oreopithecus. Significant differences in striation density and length are found among the fossil taxa studied and the extant primates, suggesting that buccal microwear can be used to identify dietary differences among taxa. The Dryopithecus buccal microwear pattern most closely resembles that of abrasive, tough plant foods consumers, such as the gorilla, in contrast to stud-ies of dental morphology that suggest a softer, frugivorous diet. Results for Oreopithecus were equivocal, but suggest a more abrasive diet than that previously thought.  相似文献   

17.
The bonobo, Pan paniscus, is one of the most endangered primate species. In the context of the Bonobo Species Survival Plan®, the Milwaukee County Zoo established a successful breeding group. Although the bonobo serves as a model species for human evolution, no prenatal growth curves are available. To develop growth graphs, the animals at the Milwaukee County Zoo were trained by positive reinforcement to allow for ultrasound exams without restraint. With this method, the well being of mother and fetus were maintained and ultrasound exams could be performed frequently. The ovulation date of the four animals in the study was determined exactly so that gestational age was known for each examination. Measurements of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL) were used to create growth curves. Prenatal growth of P. paniscus was compared with the data of humans and the common chimpanzee, P. troglodytes. With respect to cranial structures, such as BPD and HC, humans have significant acceleration of growth compared with P. paniscus and P. troglodytes. In P. paniscus, growth of AC was similar to HC throughout pregnancy, whereas in humans AC only reaches the level of HC close to term. Growth rate of FL was similar in humans and the two Pan species until near day 180 post‐ovulation. After that, the Pan species FL growth slowed compared with human FL. The newly developed fetal growth curves of P. paniscus will assist in monitoring prenatal development and predicting birth dates of this highly endangered species. Zoo Biol 30:241–253, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The pronounced carnivory of many human populations contrasts sharply with feeding habits of other Hominoidea. Of extant great apes, only chimpanzees (Pan spp.) actively seek out vertebrate prey, but meat is only a minor portion of their diet. Some accounts suggest that wild chimpanzees digest prey inefficiently. To investigate the capacity of chimpanzees to digest meat, feeding trials were carried out on three captive chimpanzees (Pan troglodytes) using a fixed amount of nonpurified diet with and without a predetermined amount of boned cooked chicken. The results showed no significant differences in the rate of passage of digesta and digestion of diets with and without chicken. Meat ingestion did not change the nitrogen (N) concentration of feces or the total amount of N defecated. Visual inspection of fecal matter showed no evidence of undigested meat. Taken together, the results indicate that chimpanzees are able to digest meat of the type and quantity consumed during these trials.  相似文献   

19.
Dental dimensions and distributions of dental dimensions of males and females were compared for great apes (Pan, Gorilla, and Pongo, and humans (Homo). The results were examined and discussed with reference to fossil primates Sivapithecus and Ramapithecus. The analyses focused on patterns of sexual dimorphism, both with regard to mean dimensions and the distribution of those dimensions. Sex differences in mean canine dimensions were large and significant for Gorilla and Pongo, significant but smaller for Pan, and small but occasionally significant for Homo. The dispersions of measures were greater for males than for females in Gorilla and Pan but did not differ significantly for Pongo or Homo. Examination of the noncanine teeth revealed complex sex differences. In the anterior teeth, sex differences in mean dimensions were generally apparent for Gorilla and Pongo, less so for Pan, and least of all in Homo. The patterns of dispersion of measures of anterior teeth differed markedly from those of the canines. Pan exhibited the same pattern for anterior and canine teeth. Gorilla showed the opposite pattern. Pongo and Homo showed similar dispersions for males and females in many cases. Sex differences in posterior teeth followed the pattern of the canines for Gorilla and were absent for Pan. Pongo exhibited mean differences in dimensions across sex, but dispersions were similar. The pattern for Homo was most like that of Pongo, but with fewer significant differences. The genera differed with regard to the number of significant differences in means or dispersions along the tooth row. It is clear that the patterns of dimorphism differ qualitatively across all extant genera of great apes and humans. It appears that the pattern for Homo most closely resembles that of Ramapithecus, whereas Pongo most closely resembles Sivapithecus. The patterns for Gorilla and Pan appear to be unlike either of the fossil forms. It is suggested that the qualitatively distinct patterns of dental sexual dimorphism indicate substantial flexibility during recent primate evolution and that the degree of structural flexibility demonstrated provides a basis for appreciating potential for plasticity of gender differences in behavioral, social, and cultural systems.  相似文献   

20.
Patterns of extant primate dental variation provide important data for interpreting taxonomic boundaries in fossil forms. Here I use dental data from several well-known living primates (as well as data from selected Eocene forms) to evaluate dental variation in Middle Eocene Omomys, the first North American fossil primate identified by paleontologists. Measurements were collected from a sample of 148 omomyid dental specimens recovered from Bridger B localities in the Bridger Basin, Wyoming. Most of these specimens have not previously been described. Nonmetric traits were also scored for this sample. Lower molar coefficients of variation range from 4.01 for M2 length (n = 80) to 6.73 for M3 talonid width (n = 57). All of the nonmetric traits scored exhibit less than 100% presence in the overall sample, including traits previously described as representative of Omomys (e.g., P4 metaconids present in 91%, n = 55; M2 pericones present in 80%, n = 15). Dental traits also vary in a set of spatially restricted localities from the same fossil horizon and in a separate, single fossil locality (DMNH 868, P4 metaconids present in 67%, n = 6). An increasing frequency in several premolar traits across time in these more restricted samples suggests an anagenetic change in Bridger B Omomys. However, this degree of morphological variability is consistent with that seen in extant primate species from single locations. Metric variation in this sample is comparable to that seen in other Eocene primates, such as new data presented here for the omomyid Arapahovius gazini from the Washakie Basin, southern Wyoming. Omomys metric variation is also comparable to that found in several samples of well-known extant primates from single localities (e.g., ring-tailed lemurs and gray–brown mouse lemurs). These metric data also correspond to the patterns of variability described in previously published studies of Omomys carteri. In sum, a single species interpretation (O. carteri) for this new Bridger B Omomys sample from southern Wyoming is affirmed, and this study illustrates the usefulness of dental data from extant primates for evaluating primate fossil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号