首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Permafrost represents an important understudied genetic resource. Soil microorganisms play important roles in regulating biogeochemical cycles and maintaining ecosystem function. However, our knowledge of patterns and drivers of permafrost microbial communities is limited over broad geographic scales. Using high‐throughput Illumina sequencing, this study compared soil bacterial, archaeal and fungal communities between the active and permafrost layers on the Tibetan Plateau. Our results indicated that microbial alpha diversity was significantly higher in the active layer than in the permafrost layer with the exception of fungal Shannon–Wiener index and Simpson's diversity index, and microbial community structures were significantly different between the two layers. Our results also revealed that environmental factors such as soil fertility (soil organic carbon, dissolved organic carbon and total nitrogen contents) were the primary drivers of the beta diversity of bacterial, archaeal and fungal communities in the active layer. In contrast, environmental variables such as the mean annual precipitation and total phosphorus played dominant roles in driving the microbial beta diversity in the permafrost layer. Spatial distance was important for predicting the bacterial and archaeal beta diversity in both the active and permafrost layers, but not for fungal communities. Collectively, these results demonstrated different driving factors of microbial beta diversity between the active layer and permafrost layer, implying that the drivers of the microbial beta diversity observed in the active layer cannot be used to predict the biogeographic patterns of the microbial beta diversity in the permafrost layer.  相似文献   

2.
【目的】探究青海湖岸带土壤与沉积物的地化特征与细菌群落对水位扩张的响应。【方法】从岸上至岸下沿垂直青海湖岸带方向,采集距离湖面不同高度土壤(土壤:S1、S2)、岸边不同水深表层沉积物(过渡区:E0、E6、E17)及湖心表层沉积物(沉积物:D1、D2)样品,土壤与沉积物水深(土壤水深表示为负数)从小到大的变化表征岸边土壤被淹水转变为沉积物的过程。采用地球化学分析和16SrRNA基因高通量测序技术,探究岸带土壤与沉积物样品中的地化特征与微生物群落构成。【结果】青海湖水位上升导致的生境转变对岸带土壤与沉积物的理化性质、营养水平、有机碳类型等地化特征产生显著影响。具体表现为,随着水位升高,岸带土壤与沉积物的pH、矿物结合态有机碳含量显著升高,而碳氮比值、可溶性有机碳(dissolved organic carbon,DOC)、颗粒态有机碳含量显著下降。随着水位上升,青海湖岸带被淹没土壤的细菌群落多样性下降,且群落结构发生明显变化。这种变化与环境因子变化密切相关,具体表现为,细菌群落物种丰富度指数和香农多样性指数随着水位上升呈下降趋势;活性金属结合态有机碳含量与细菌群落多样性的变化密切相关;理化...  相似文献   

3.
Fungal and bacterial community structure in tussock, intertussock and shrub organic and mineral soils at Toolik Lake, Alaska were evaluated. Community structure was examined by constructing clone libraries of partial 16S and 18S rRNA genes. The soil communities were sampled at the end of the growing season in August 2004 and just after the soils thawed in June 2005. The communities differed greatly between vegetation types, although tussock and intertussock soil communities were very similar at the phyla level. The communities were relatively stable between sample dates at the phyla and subphyla levels, but differed significantly at finer phylogenetic scales. Tussock and intertussock bacterial communities were dominated by Acidobacteria, while shrub soils were dominated by Proteobacteria. These results appear consistent with previous work demonstrating that shrub soils contain an active, bioavailable C fraction, while tussock soils are dominated by more recalcitrant substrates. Tussock fungi communities had higher proportions of Ascomycota than shrub soils, while Zygomycota were more abundant in shrub soils. Recent documentation of increasing shrub abundance in the Arctic suggests that soil microbial communities and their functioning are likely to be altered by climate change.  相似文献   

4.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

5.
Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical–chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha‐ and Gamma‐Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta‐Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near‐surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.  相似文献   

6.
Soil microorganisms living in close contact with minerals play key roles in the biogeochemical cycling of elements, soil formation, and plant nutrition. Yet, the composition of microbial communities inhabiting the mineralosphere (i.e., the soil surrounding minerals) is poorly understood. Here, we explored the composition of soil microbial communities associated with different types of minerals in various soil horizons. To this effect, a field experiment was set up in which mineral specimens of apatite, biotite, and oligoclase were buried in the organic, eluvial, and upper illuvial horizons of a podzol soil. After an incubation period of two years, the soil attached to the mineral surfaces was collected, and microbial communities were analyzed by means of Illumina MiSeq sequencing of the 16S (prokaryotic) and 18S (eukaryotic) ribosomal RNA genes. We found that both composition and diversity of bacterial, archaeal, and fungal communities varied across the different mineral surfaces, and that mineral type had a greater influence on structuring microbial assemblages than soil horizon. Thus, our findings emphasize the importance of mineral surfaces as ecological niches in soils.  相似文献   

7.
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.  相似文献   

8.
Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β‐1,4‐glucosidase and cellobiohydrolase), chitin (i.e., β‐1,4‐N‐acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram‐negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.  相似文献   

9.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

10.
Sediment cores taken from Great Slave Lake, Canada, were analysed to investigate their metabolically active microbial populations and geochemistry. The amplification of cDNA detected metabolically active bacterial (50 separate bands) and archaeal (49 separate band) communities. The bacterial communities were further resolved indicating active actinobacterial and γ-proteobacterial communities (36 and 43 individual bands respectively). Redundancy discriminate analysis and Monte Carlo permutation testing demonstrated the significant impact of geochemical parameters on microbial community structures. Geochemical analyses suggest that the upper 0.4 m represents soil weathering and erosion in the lake catchment. An increase in organic carbon in the lower core suggests either more primary productivity, indicating warmer climate conditions, associated with Holocene Climatic Optimum conditions pre 5,000 years BP or change from a reducing environment in the lower core to an oxidizing environment during more recent deposition. Drivers for bacterial, archaeal and actinobacterial community structures were sediment particle size, and its mineral composition. Depth also significantly affected γ- proteobacterial community structure. In contrast the organic carbon content did not significantly shape the microbial community structures within the sediment. This study indicates that geochemical parameters significantly contribute to microbial community structure in these sediments.  相似文献   

11.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

12.
Bacteria colonize reactive minerals in soils where they contribute to mineral weathering and transformation. So far, the specificity, patterns and dynamics of mineral colonization have rarely been assessed under natural conditions. High throughput Illumina sequencing was employed to investigate the bacterial communities assembling on illite and goethite during exposure to natural grassland soils. Two different types of organic carbon sources, simple carbon compounds representing root exudates and detritus of two dominant grassland plant species were applied, and their effects on the temporal dynamics of bacterial communities were investigated. The observed temporal patterns suggest that the surfaces of de novo exposed minerals in soils drive the establishment of bacterial communities and override the effect of the type of carbon sources and of other environmental properties. Mineral colonization was selective and specific bacterial sequence variants exhibited distinct colonization patterns, among which early, intermittent, and late colonizers could be distinguished. Based on our results, soil minerals are not only colonized by specific bacterial communities but enable a succession of different bacterial communities. Our results thereby expand the concept of the mineralosphere and provide novel insights into mechanisms of community assembly in the soil ecosystem.  相似文献   

13.
Wildfires subject soil microbes to extreme temperatures and modify their physical and chemical habitat. This might immediately alter their community structure and ecosystem functions. We burned a fire-prone shrubland under controlled conditions to investigate (1) the fire-induced changes in the community structure of soil archaea, bacteria and fungi by analysing 16S or 18S rRNA gene amplicons separated through denaturing gradient gel electrophoresis; (2) the physical and chemical variables determining the immediate shifts in the microbial community structure; and (3) the microbial drivers of the change in ecosystem functions related to biogeochemical cycling. Prokaryotes and eukaryotes were structured by the local environment in pre-fire soils. Fire caused a significant shift in the microbial community structure, biomass C, respiration and soil hydrolases. One-day changes in bacterial and fungal community structure correlated to the rise in total organic C and NO(3)(-)-N caused by the combustion of plant residues. In the following week, bacterial communities shifted further forced by desiccation and increasing concentrations of macronutrients. Shifts in archaeal community structure were unrelated to any of the 18 environmental variables measured. Fire-induced changes in the community structure of bacteria, rather than archaea or fungi, were correlated to the enhanced microbial biomass, CO(2) production and hydrolysis of C and P organics. This is the first report on the combined effects of fire on the three biological domains in soils. We concluded that immediately after fire the biogeochemical cycling in Mediterranean shrublands becomes less conservative through the increased microbial biomass, activity and changes in the bacterial community structure.  相似文献   

14.
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.  相似文献   

15.
Grassland management intensification can significantly affect the structure and composition of important soil microbial groups such as bacteria and fungi. Changes to these microbial communities can greatly influence carbon (C) and nitrogen (N) cycling in grassland soils. Here we specifically address how microbial abundances might shift under the effect of multiple management practices and how this in turn might relate to changes in soil C and N storage. Soil samples were collected from a 23-year-old grassland experiment and real-time quantitative Polymerase Chain Reaction (PCR) was performed to address whether and how (1) chronic nutrient additions, (2) liming (i.e., the addition of CaCO3 to soils), and (3) grazing by rabbits might affect archaeal, bacterial and fungal microbial groups. We found that liming additions significantly increased archaeal and bacterial abundance whilst strongly reducing fungal abundance. The addition of N-only (as NH4NO3) significantly reduced bacterial abundance while chronic grazing by rabbits resulted in positive effects on archaeal abundance. Despite long-term grassland management significantly affecting soil microbial abundances (and Fungal-to-Bacterial ratios), microbial changes were not related to either changes in soil C or N pools. Overall, our results suggest that (1) important microbial-‘soil functioning’ relationships may only be detected at lower taxonomic levels, and (2) liming-induced increases in soil pH determined significant shifts in soil microbial abundance, which could have important consequences for the delivery of multiple soil ecosystem services (i.e., nutrient regulation, C and N sequestration) from permanent grassland.  相似文献   

16.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

17.
A large portion of the World’s terrestrial organic carbon is stored in Arctic permafrost soils. However, due to permafrost warming and increased in situ microbial mineralisation of released carbon, greenhouse gas releases from Arctic soils are increasing, including methane (CH4(g)). To identify environmental controls on such releases, we characterised soil geochemistry and microbial community conditions in 13 near-surface Arctic soils collected across Kongsfjorden, Svalbard. Statistically significant correlations were found between proxies for carbonate mineral content (i.e. Ca and Mg) and soil pH (Spearman rho = 0.87, p < 0.001). In turn, pH significantly inversely correlated with bacterial and Type I methanotroph gene abundances across the soils (r = ?0.71, p = 0.01 and r = ?0.74, p = 0.006, respectively), which also co-varied with soil phosphorous (P) level (r = 0.79, p = 0.01 and r = 0.63, p = 0.02, respectively). These results suggest that soil P supply, which is controlled by pH and other factors, significantly influences in situ microbial abundances in these Arctic soils. Overall, we conclude microbial responses to increasing ‘old carbon’ releases in this Arctic region are constrained by nutrient-deficiency in surface soils, with consequential impacts on the flux and composition of carbon gasses released to the atmosphere.  相似文献   

18.
蚂蚁作为生态系统工程师,能够通过筑巢定居活动增加有机物的输入、改变理化环境及刺激微生物活动,进而影响土壤有机碳矿化动态.本研究以西双版纳高檐蒲桃热带森林群落为研究对象,比较了蚁巢地与非巢地土壤有机碳矿化速率的动态特征,分析蚂蚁筑巢引起的土壤理化性质改变对土壤碳矿化速率的影响.结果表明: 蚂蚁筑巢显著影响土壤有机碳的矿化,相较于非巢地,蚁巢地平均土壤有机碳矿化速率提高19.2%;巢地与非巢地土壤有机碳矿化速率均表现为6月>9月>3月>12月;蚁巢地土壤有机碳矿化速率最大值出现在10~15 cm土层,而非巢地土壤有机碳矿化速率0~5 cm土层最高;蚂蚁筑巢对土壤理化性质产生了显著影响,相较于非蚁巢地,蚁巢地土壤温度、水分、有机碳、微生物生物量碳、全氮、水解氮、硝态氮和铵态氮平均增加幅度分别为7.6%、5.4%、9.9%、14.8%、13.4%、9.9%、24.1%、6.6%和19.4%,而土壤容重和pH平均降幅分别为1.4%和2.5%.相关性分析及主成分分析表明,土壤有机碳和土壤微生物量碳是影响土壤有机碳矿化速率的主控因子,土壤全氮、水解氮、铵态氮、硝态氮、温度和土壤含水率对土壤有机碳矿化的贡献次之.蚂蚁筑巢主要显著改变有机碳矿化的底物组分(土壤有机碳和土壤微生物生物量碳),进而调控西双版纳热带森林土壤有机碳矿化速率的时空动态.  相似文献   

19.
Although pyrogenic organic matter (PyOM) generated during wildfires plays a critical role in post-fire ecosystem recovery, the specific mechanisms by which PyOM controls soil microbial community assembly after wildfire perturbation remain largely uncharacterized. Herein we characterized the effect of PyOM on soil bacterial communities at two independent wildfire-perturbed forest sites. We observed that α-diversity of bacterial communities was the highest in wildfire-perturbed soils and that bacterial communities gradually changed along a sequence of unburnt soil → burnt soil → PyOM. The microbial communities reconstructed from unburnt soil and PyOM resembled the real bacterial communities in wildfire-perturbed soils in their α-diversity and community structure. Bacterial specialists in PyOM and soils clustered in phylogenetic coherent lineages with intra-lineage pH-niche conservatism and inter-lineage pH-niche divergence. Our results suggest that PyOM mediates bacterial community assembly in wildfire-perturbed soils by a combination of environmental selection and dispersal of phylogenetic coherent specialists with habitat preference in the heterogeneous microhabitats of burnt soils with distinct PyOM patches.Subject terms: Forest ecology, Microbial ecology  相似文献   

20.
Climate and parent material strongly control vegetation structure and function, yet their control over the belowground microbial community is poorly understood. We assessed variation in microbial lipid profiles in undisturbed forest soils (organic and surface mineral horizons) along an altitudinal gradient (700, 1,700, and 2,700 m a.s.l. mean annual temperature of 12–24°C) on two contrasting parent materials (acidic metasedimentary vs. ultrabasic igneous rock) in Mt. Kinabalu, Borneo. Soil organic carbon and nitrogen concentrations were generally higher at higher altitudes and, within a site, at upper soil horizons. Soil pH ranged from 3.9 to 5.3, with higher values for the ultrabasic soils especially at higher altitudes. The major shifts in microbial community structure observed were the decline in the ratio of fungal to bacterial lipid markers both with increasing soil depth and decreasing altitude. The positive correlation between this ratio with soil C and N concentrations suggested a strong substrate control in accord with the literature from mid to high-latitude ecosystems. Principal component analysis using seven groups of signature lipids suggested a significant altitude by parent material interaction—the significant difference in microbial community structure between the two rock types found at 2,700-m sites developed on weakly weathered soils diminished with decreasing altitude towards 700-m sites where soils were strongly weathered. These results are consistent with the hypothesis that parent material effect on soil microbial community (either directly via soil geochemistry or indirectly via floristic composition) is stronger at an earlier stage of ecosystem development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号