首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequence of cassowary (Casuarius casuarius) goose type lysozyme was analyzed by direct protein sequencing of peptides obtained by cleavage with trypsin, V8 protease, chymotrypsin, lysyl endopeptidase, and cyanogen bromide. The N-terminal residue of the enzyme was deduced to be a pyroglutamate group by analysis with a LC/MS/MS system equipped with the oMALDI ionization source, and then confirmed by a glutamate aminopeptidase enzyme. The blocked N-terminal is the first reported in this enzyme group. The positions of disulfide bonds in this enzyme were chemically identified as Cys4-Cys60 and Cys18-Cys29. Cassowary lysozyme was proved to consist of 185 amino acid residues and had a molecular mass of 20408 Da calculated from the amino acid sequence. The amino acid sequence of cassowary lysozyme compared to that of reported G-type lysozymes had identities of 90%, 83%, and 81%, for ostrich, goose, and black swan lysozymes, respectively. The amino acid substitutions at PyroGlu1, Glu19, Gly40, Asp82, Thr102, Thr156, and Asn167 were newly detected in this enzyme group. The substituted amino acids that might contribute to substrate binding were found at subsite B (Asn122Ser, Phe123Met). The amino acid sequences that formed three alpha-helices and three beta-sheets were completely conserved. The disulfide bond locations and catalytic amino acid were also strictly conserved. The conservation of the three alpha-helices structures and the location of disulfide bonds were considered to be important for the formation of the hydrophobic core structure of the catalytic site and for maintaining a similar three-dimensional structure in this enzyme group.  相似文献   

2.
Skin secretions of the frog Agalychnis litodryas were evaluated for the isolation and characterisation of novel insulinotropic peptides. Crude secretions obtained from young adult frogs by mild electrical stimulation of the dorsal skin surface were purified by reverse-phase high-performance liquid chromatography (HPLC) yielding 70 fractions. In acute 20-min incubations with glucose responsive BRIN-BD11 cells, fractions 39-42 (band 1) and fractions 44-46 (band 2) significantly stimulated insulin release by 2-3.5-fold compared with 5.6 mM glucose alone. Pooled fractions in band 1 and band 2 were rechromatographed to reveal 20 homogenous peptide peaks, which elicited significant 1.5-4-fold increases in insulin release. Mass spectrometry analyses indicated molecular masses of between 1649.2 and 4988.9 Da. The two peptides with the greatest insulin-releasing activity were directly subjected to N-terminal amino acid sequence analysis. The sequence of the 3020 Da peptide, called frog skin insulinotropic peptide or FSIP, was determined as AVWKDFLKNIGKAAGKAVLNSVTDMVNE, which has 79% homology with the C-terminal of the 75 amino acid dermaseptin BIV precursor. A partial N-terminal sequence was determined for the 2546.2 Da peptide as MLADVFEKIMGD... These data indicate that the skin secretions of A. litodryas frogs contain biologically active peptides which merit further evaluation as a new class of insulin secretagogues.  相似文献   

3.
We describe an enabling technique for proteome analysis based on isotope-differential dimethyl labeling of N-termini of tryptic peptides followed by microbore liquid chromatography (LC) matrix-assisted laser desorption and ionization (MALDI) mass spectrometry (MS). In this method, lysine side chains are blocked by guanidination to prevent the incorporation of multiple labels, followed by N-terminal labeling via reductive amination using d(0),(12)C-formaldehyde or d(2),(13)C-formaldehyde. Relative quantification of peptide mixtures is achieved by examining the MALDI mass spectra of the peptide pairs labeled with different isotope tags. A nominal mass difference of 6 Da between the peptide pair allows negligible interference between the two isotopic clusters for quantification of peptides of up to 3000 Da. Since only the N-termini of tryptic peptides are differentially labeled and the a(1) ions are also enhanced in the MALDI MS/MS spectra, interpretation of the fragment ion spectra to obtain sequence information is greatly simplified. It is demonstrated that this technique of N-terminal dimethylation (2ME) after lysine guanidination (GA) or 2MEGA offers several desirable features, including simple experimental procedure, stable products, using inexpensive and commercially available reagents, and negligible isotope effect on reversed-phase separation. LC-MALDI MS combined with this 2MEGA labeling technique was successfully used to identify proteins that included polymorphic variants and low abundance proteins in bovine milk. In addition, by analyzing a mixture of two equal amounts of milk whey fraction as a control, it is shown that the measured average ratio for 56 peptide pairs from 14 different proteins is 1.02, which is very close to the theoretical ratio of 1.00. The calculated percentage error is 2.0% and relative standard deviation is 4.6%.  相似文献   

4.
The Staphylococcus aureus surface protein G (SasG) is an important mediator of biofilm formation in virulent S. aureus strains. A detailed analysis of its primary sequence has not been reported to date. SasG is highly abundant in the cell wall of the vancomycin-intermediate S. aureus strain HIP5827, and was purified and subjected to sequence analysis by MS. Data from MALDI-TOF and LC-MS/MS experiments confirmed the predicted N-terminal signal peptide cleavage site at residue A51 and the C-terminal cell wall anchor site at residue T1086. The protein was also derivatized with N-succinimidyloxycarbonyl-methyl-tris(2,4,6-trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu) to assess the presence of additional N-terminal sites of mature SasG. TMPP-derivatized SasG peptides featured m/z peaks with a 572 Da mass increase over the equivalent underivatized peptides. Multiple N-terminal peptides, all of which were observed in the 150 amino acid segment following the signal peptide cleavage at the residue A51, were characterized from MS and MS/MS data, suggesting a series of successive N-terminal truncations of SasG. A strategy combining TMPP derivatization, multiple enzyme digestions to generate overlapping peptides and detailed MS analysis will be useful to determine and understand functional implications of PTMs in bacterial cell wall-anchored proteins, which are frequently involved in the modulation of virulence-associated bacterial surface properties.  相似文献   

5.
Enzymatic digests of proteins S-alkylated with iodoacetamide may contain peptides with N-terminal S-carbamoylmethylcysteine. These can be partly converted to a form with 17 Da lower mass and increased HPLC retention. Proof by synthesis supported by MS/MS and NMR spectroscopy was used to show that N-terminal S-carbamoylmethyl-L-cysteine can cyclize, losing NH3 to form an N-terminal residue of (R)-5-oxoperhydro-1,4-thiazine-3-carboxylic acid. The abbreviation Otc is proposed for the (R)-5-oxoperhydro-1,4-thiazine-3-carbonyl residue. The rate of cyclization is significant in 0.1 M NH4HCO3 at 37 degrees C, with the half-life of the acyclic form being 10-12 h for several peptides tested. This is similar to the rate at which N-terminal pyroglutamate forms from N-terminal glutamine.  相似文献   

6.
The amino-acid sequence of bovine glutathione peroxidase   总被引:6,自引:0,他引:6  
The amino-acid sequence of the seleno-enzyme glutathione peroxidase from bovine erythrocytes was completely determined. Fragmentation of the carboxymethylated protein comprised cleavages with trypsin, with endoproteinase Lys-C, and with cyanogen bromide in 70% formic acid. The resulting peptides were separated by reversed-phase high-performance chromatography or by gel filtration. For sequence determination automated solid or liquid phase techniques of Edman degradation were used. The proper alignment of fragments was experimentally proven in all but one instance. In this case, consistent indirect evidence was provided. The monomer of glutathione peroxidase was shown to consist of 198 amino acids representing a molecular mass ob about 21 900 Da. The active site selenocysteine was localized at position 45. In addition, four cysteine residues were found at positions 74, 91, 111, and 152. The N-terminal part of the sequence obtained revealed a pronounced homology with a partial sequence of the rat liver enzyme. Moreover, tentative sequence data predicted from X-ray crystallographic analysis of bovine glutathione peroxidase were found to agree in about 80% of the residues with the sequence presented. Differences between the predicted and the experimentally determined sequence are discussed.  相似文献   

7.
We have isolated an 8770Da peptide from extracts of corpora cardiaca of adult male and female Locusta migratoria. The N-terminal amino-acid sequence as partially established by Edman degradation is Ala-Leu-Gly-Ala-Pro-Ala-Ala-Gly-Asp. These nine amino acids correspond to the first nine N-terminal amino acids of the adipokinetic hormone precursor-related peptide gamma-chain (APRP-gamma), a peptide that is predicted from the gene encoding the adipokinetic hormone III precursor. The APRP-gamma chain has a monoisotopic mass of 4387Da and contains two cysteine residues. It is known that both AKH I and AKH II precursors occur as dimers. After processing they give rise to the active hormones and three dimeric (two homodimers and one heterodimer) adipokinetic hormone precursor related peptides (APRPs). Based on the mass of 8770Da and the established N-terminal sequence tag, we conclude that the isolated peptide is a homodimer consisting of two APRP-gamma units, covalently linked to each other by two disulphide bounds. In analogy with the previous identified APRPs (APRP-1, APRP-2, and APRP-3), this APRP will be designated as APRP-4.  相似文献   

8.
The sequence of very basic proteins such as protamines (more than 50% arginines) and related peptides has been determined using mass spectrometry in conjunction with Edman degradation. The capabilities of three mass spectrometric (MS) techniques [fast-atom-bombardment (FAB), 252Cf plasma desorption (252CFPD) and electrospray (ES)] have been evaluated on stallion protamine 1, cuttlefish protamine, and the corresponding cleavage peptides. In contrast to FAB-MS and 252Cf PD-MS, ES-MS made possible an easy determination of the molecular mass of the intact protamines (approximately 8 kDa). With ES-MS about 0.2 nmol was sufficient to yield a mass measurement with an accuracy of 0.05%. On peptides smaller than 3500 Da, both FAB-MS and 252Cf PD-MS allowed mass measurements with an accuracy of 0.1%. 252Cf PD-MS appeared more sensitive than FAB-MS by about a factor of 10. FAB-MS is nevertheless particularly interesting since in most cases it produced spectra with intense A-type fragmentation ions which provided reliable primary structure information.  相似文献   

9.
The major peroxidase of barley seed BP 1 was characterized. Previous studies showed a low carbohydrate content, low specific activity and tissue-specific expression, and suggested that this basic peroxidase could be particularly useful in the elucidation of the structure-function relationship and in the study of the biological roles of plant peroxidases (S.K. Rasmussen, K.G. Welinder and J. Hejgaard (1991) Plant Mol Biol 16: 317–327). A cDNA library was prepared from mRNA isolated from seeds 15 days after flowering. Full-length clones were obtained and showed 3 end length variants, a G+C content of 69% in the translated region, a 90% G or C preference in the wobble position of the codons and a typical signal peptide sequence. N-terminal amino acid sequencing and sequence analysis of tryptic peptides verified 98% of the sequence of the mature BP 1 which contains 309 amino acid residues. BP 1 is the first characterized plant peroxidase which is not blocked by pyroglutamate. BP 1 polymorphism was observed. BP 1 is less than 50% identical to other plant peroxidases which, taken together with its developmentally dependent expression in the endosperm 15–20 days after flowering, suggests a unique biological role of this enzyme. The barley peroxidase is processed at the C-terminus and might be targeted to the vacuole. The single site of glycosylation is located near the C-terminus in the N-glycosylation sequon -Asn-Cys-Ser- in which Cys forms part of a disulphide bridge. The major glycan is a typical plant modified-type structure, Man1-6(Xyl1-2)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc. The BP 1 gene was RFLP-mapped on barley chromosome 3, and we propose Prx5 as the name for this new peroxidase locus.  相似文献   

10.
Mass spectrometry in three dimensions (MS3D) is a newly developed method for the determination of protein structures involving intramolecular chemical crosslinking of proteins, proteolytic digestion of the resulting adducts, identification of crosslinks by mass spectrometry (MS), peak assignment using theoretical mass lists, and computational reduction of crosslinks to a structure by distance geometry methods. To facilitate the unambiguous identification of crosslinked peptides from proteolytic digestion mixtures of crosslinked proteins by MS, we introduced double 18O isotopic labels into the crosslinking reagent to provide the crosslinked peptides with a characteristic isotope pattern. The presence of doublets separated by 4 Da in the mass spectra of these materials allowed ready discrimination between crosslinked and modified peptides, and uncrosslinked peptides using automated intelligent data acquisition (IDA) of MS/MS data. This should allow ready automation of the method for application to whole expressible proteomes.  相似文献   

11.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

12.
Egg white ribonuclease was first found in green turtle eggs. This enzyme has been purified by CM-toyopearl cation exchange. Two isoforms (GTRNase-1 and GTRNase-2) were further separated by RP-HPLC, with the same M.W. (13 kDa) and activity. These isoforms carried one amino acid exchange of Ser and Leu at the position 37. The N-terminal sequence, ETRYEKF, was determined for the transblotted protein. Internal sequences were analyzed by protein sequencer and ESI-Q-TOF mass spectrometry for tryptic peptides (Ts). The overlapping sequences were obtained from chymotryptic peptides, CNBr fragments and ISD-MS/MS analysis. The C-terminal Ile was identified by CPase-Y. The established sequence composed of 119 residues with the molecular mass of 12,942.1 Da for GTRNase-1 and 12,967.8 Da for GTRNase-2. The comparison of sequence with known pancreatic RNases, 27 positions including catalytic residues at the position 11 and 114 were conserved. Also basic residues contributed to phosphate binding residues were conserved with the exception of Lys 66. One insertion at the position 14, and 3 deletions at the position-1, between position 64–65, and 110 and 111 were found. Two Cys residues at position 65 and 72 that form a disulfide bond in mammalian RNase were deleted and exchanged. All these difference in the sequence were similar to reptile pancreatic RNase.Data deposition: The sequence reported in this paper has been submitted to the UniProt Knowledgebase under accession No. P84844.  相似文献   

13.
Most proteomic labelling technologies intend to improve protein quantification and/or facilitate (de novo) peptide sequencing. We present here a novel stable-isotope labelling method to simultaneously identify and quantify protein components in complex mixtures by specifically derivatizing the N-terminus of proteins with 4-sulphophenyl isothiocyanate (SPITC). Our approach combines protein identification with quantification through differential isotope-coded labelling at the protein N-terminus prior to digestion. The isotope spacing of 6 Da (unlabelled vs. six-fold 13C-labelled tag) between derivatized peptide pairs enables the detection on different MS platforms (MALDI and ESI). Optimisation of the reaction conditions using SPITC was performed on three model proteins. Improved detection of the N-terminally derivatized peptide compared to the native analogue was observed in negative-ion MALDI-MS. Simpler fragmentation patterns compared to native peptides facilitated protein identification. The 13C-labelled SPITC resulted in convenient peptide pair spacing without isotopic overlap and hence facilitated relative quantification by MALDI-TOF/TOF and LC-ESI-MS/MS. The combination of facilitated identification and quantification achieved by differentially isotope-coded N-terminal protein tagging with light/heavy SPITC represents, to our knowledge, a new approach to quantitative proteomics.  相似文献   

14.
The glycation of beta cell proteins is known to occur under hyperglycemic states. The site(s) of glycation in human proinsulin was investigated following exposure to a hyperglycemic environment under reducing conditions in vitro. Proinsulin and glycated proinsulin were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and identified using LCQ ion-trap electrospray ionization mass spectrometry. This revealed a major peak (>70% total) of monoglycated proinsulin (M(r) 9552.2 Da), a second peak (approximately 27%) of nonglycated proinsulin (M(r) 9389.8 Da), and a third minor peptide peak (approximately 3%) corresponding to diglycated proinsulin (M(r) 9717.9 Da). Following reduction of disulphide bridges with dithiothreitol, intact peptides were incubated with endoproteinase Glu-C to release nine daughter fragments for LC-MS analysis. This strategy revealed an N-terminal fragment of monoglycated proinsulin Phe(1)-Glu(13), which contained a single glucitol adduct (M(r) 1642.0 Da). A similar treatment of small amounts of purified diglycated proinsulin revealed a fragment with Phe(1)-Glu(13) linked by a disulphide bridge to Gln(70)-Glu(82) containing two glucitol adducts (M(r) 3292.7 Da). In summary, these studies indicate that the major site of glycation in proinsulin, like insulin, is the amino terminal Phe(1) residue. However, small amounts of diglycated proinsulin occur naturally, involving an additional site of glycation located between Gln(70) and Glu(82).  相似文献   

15.
The N-terminal amino acid sequence (23 amino acid residues) and the amino acid composition of the extracellular bacteriolytic enzyme L1 of 21 kD from the bacterium Lysobacter sp. XL1 have been determined. The enzyme was hydrolyzed by trypsin, the resulting peptides were isolated, and their primary structures were determined. A high extent of homology (92%) of the N-terminal amino acid sequence and the primary structure of isolated peptides of the enzyme L1 (62 amino acid residues or 31% of protein sequence) to the corresponding sites of alpha-lytic proteinases (EC 3.4.21.12) of Lysobacter enzymogenes and Achromobacter lyticus was found. These data allowed identification of the endopeptidase L1 of Lysobacter sp. XL1 as alpha-lytic proteinase EC 3.4.21.12.  相似文献   

16.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3-3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded K(m) (1667 microM) and V(max) (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3-3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3-3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3-3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3-3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys(51), Lys(82), Lys(123), Lsy(181), Lys(191) and Lys(210)) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   

17.
Two novel peptides were isolated from the crude venom of the social wasp Polybia paulista, by using RP-HPLC under a gradient of MeCN from 5 to 60% (v/v) and named Polybine-I and -II. Further purification of these peptides under normal phase chromatography, rendered pure enough preparations to be sequenced by Edman degradation chemistry. However, both peptides did not interact with phenylisothiocyanate reagent, suggesting the existence of a chemically blocked N-terminus. Therefore, the sequences of both peptides were assigned by ESI-MS/MS under CID conditions, as follows: Polybine-I Ac-SADLVKKIWDNPAL-NH2 (Mr 1610 Da) and Polybine-II Ac-SVDMVMKGLKIWPL-NH2 (Mr 1657 Da). During the tandem mass spectrometry experiments, a loss of 43 a.m.u. was observed from the N-terminal residue of each peptide, suggesting the acetylation of the N-terminus. Subsequently, the peptides with and without acetylation were synthesized on solid phase and submitted to functional characterizations; the biological activities investigated were: hemolysis, chemotaxis of polymorphonucleated leukocytes (PMNL), mast cell degranulation and antibiosis. The results revealed that the acetylated peptides exhibited more pronounced chemotaxis of PMNL cells and mast cell degranulation than the respective non-acetylated congeners; no hemolytic and antibiotic activities were observed, irrespective to the blockage or not of the -amino groups of the N-terminal residues of each peptide. Therefore, the N-terminal acetylation may be related to the increase of the inflammatory activity of both peptides.  相似文献   

18.
Nociceptin and its receptor (OP(4)) share sequence homologies with the opioid peptide ligand dynorphin A and its receptor OP(2). Cationic residues in the C-terminal sequence of both peptides seem to be required for selective receptor occupation, but the number and the distribution of these basic residues are different and quite critical. Both receptors are presumably activated by the peptides N-terminal sequence (Xaa-Gly Gly-Phe, where Xaa = Phe or Tyr); however, although OP(4) requires Phe(4) as a determinant pharmacophore, OP(2) requires Tyr(1) as do the other opioid receptors. An extensive structure-activity analysis of the N-terminal tetrapeptide has led to conclude that the presence of aromatic residues in position one and four, preferably Phe, as well as the distance between Phe(1) and Phe(4) are extremely critical for occupation and activation of OP(4) in contrast with other opioid receptors (e.g. OP(1), OP(3), OP(2)). Modification of distance between the side chains of Phe(1) and Phe(4) (as obtained with Nphe(1) substitution in both NC and NC(1-13)-NH(2)) and/or conformational orientation of Phe(1) (as in Phe(1)psi(CH(2)-NH)-Gly(2)) has brought to discovery of pure antagonist ([Nphe(1)]-NC(1-13)-NH(2)) and a partial agonist ([Phe(1) psi(CH(2)-NH)-Gly(2)]-NC(1-13)-NH(2)), which have allowed us to characterize and classify the OP(4) receptor in several species. Thus, although antagonist activities at the OP(4) receptor are obtained by chemical modification of Phe(1)-Gly(2) peptide bond or by a shift of Phe(1) side chain of NC peptides, antagonism at the OP(2) receptor requires the diallylation of the N-terminal amino function, for instance, of dynorphin A. These considerations support the interpretation that the two systems nociceptin/OP(4) and dynorphin A/OP(2) are distinct pharmacological entities that differs in both their active sites (Tyr(1) for Dyn A and Phe(4) for NC) and the number and position of cationic residues in the C-terminal portions of the molecules. The chemical features of novel OP(4) receptor ligands either pseudopeptides obtained by combinatorial library screening or molecules of nonpeptide structure are reported and discussed in comparison with NC and NC related peptides.  相似文献   

19.
In order to identify new orcokinin and orcomyotropin-related peptides in crustaceans, molecular and immunocytochemical data were combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In the crayfish Procambarus clarkii, four orcokinins and an orcomyotropin-related peptide are present on the precursor. Because these peptides are highly conserved, we assumed that other species have an identical number of peptides. To identify the peptides, immunocytochemistry was used to localize the regions of the stomatogastric nervous system in which orcokinins are predominantly present. One of the regions predominantly containing orcokinins was a previously undescribed olive-shaped neuropil region within the commissural ganglia of the lobsters Homarus americanus and Homarus gammarus. MALDI-TOF MS on these regions identified peptide masses that always occur together with the known orcokinins. Seven peptide ions occurred together in the peptide massspectra of the lobsters. Mass spectrometric fragmentation by MALDI-MS post-source decay (PSD) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI Q-TOF MS) collision-induced dissociation (CID) were used in the identification of six of these masses, either as orcokinins or as orcomyotropin-related peptides and revealed three hitherto unknown peptide variants, two of which are [His13]-orcokinin ([M+H]+ = 1540.8 Da) and an orcomyotropin-related peptide FDAFTTGFGHN ([M+H]+ = 1213.5 Da). The mass of the third previously unknown orcokinin variant corresponded to that of an identified orcokinin, but PSD fragmentation did not support the suggested amino acid sequence. CID analysis allowed partial de novo sequencing of this peptide. In the crab Cancer pagurus, five orcokinins and an orcomyotropin-related peptide were unambigously identified, including the previously unknown peptide variant [Ser9-Val13]-orcokinin ([M+H]+ = 1532.8 Da).  相似文献   

20.
The immature core protein (p23, residues 1 to 191) of hepatitis C virus undergoes posttranslational modifications including intramembranous proteolysis within its C-terminal signal sequence by signal peptide peptidase to generate the mature form (p21). In this study, we analyzed the cleavage site and other amino acid modifications that occur on the core protein. To produce the posttranslationally modified core protein, we used a baculovirus-insect cell expression model system. As previously reported, p23 is processed to form p21 in insect as well as in mammalian cells. p21 was found to be associated with the cytoplasmic membrane, and its significant portion behaved as an integral membrane protein. The protein was purified from the membrane by a simple and unique procedure on the basis of its membrane-binding properties and solubility in detergents. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of purified p21 showed that the average molecular mass (m/z 19,307) of its single-charged ion differs by m/z 1,457 from that calculated for p23. To determine the posttranslational modifications, tryptic p21 peptides were analyzed by MALDI-TOF MS. We found three peptides that did not match the theoretically derived peptides of p23. Analysis of these peptides by MALDI-TOF tandem MS revealed that they correspond to N-terminal peptides (residues 2 to 9 and 2 to 10) starting with alpha-N-acetylserine and C-terminal peptide (residues 150 to 177) ending with phenylalanine. These results suggest that the mature core protein (molecular mass of 19,306 Da) includes residues 2 to 177 and that its N terminus is blocked with an acetyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号