首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal metabolism of biphenyl.   总被引:9,自引:0,他引:9       下载免费PDF全文
gamma-Glutamyl phosphate reductase, the second enzyme of proline biosynthesis, catalyses the formation of l-glutamic acid 5-semialdehyde from gamma-glutamyl phosphate with NAD(P)H as cofactor. It was purified 150-fold from crude extracts of Pseudomonas aeruginosa PAO 1 by DEAE-cellulose chromatography and hydroxyapatite adsorption chromatography. The partially purified preparation, when assayed in the reverse of the biosynthetic direction, utilized l-1-pyrroline-5-carboxylic acid as substrate and reduced NAD(P)(+). The apparent K(m) values were: NAD(+), 0.36mm; NADP(+), 0.31mm; l-1-pyrroline-5-carboxylic acid, 4mm with NADP(+) and 8mm with NAD(+); P(i), 28mm. 3-(Phosphonoacetylamido)-l-alanine, a structural analogue of gamma-glutamyl phosphate, inhibited this enzyme competitively (K(i)=7mm). 1-Pyrroline-5-carboxylate reductase (EC 1.5.1.2), the third enzyme of proline biosynthesis, was purified 56-fold by (NH(4))(2)SO(4) fractionation, Sephadex G-150 gel filtration and DEAE-cellulose chromatography. It reduced l-1-pyrroline-5-carboxylate with NAD(P)H as a cofactor to l-proline. NADH (K(m)=0.05mm) was a better substrate than NADPH (K(m)=0.02mm). The apparent K(m) values for l-1-pyrroline-5-carboxylate were 0.12mm with NADPH and 0.09mm with NADH. The 3-acetylpyridine analogue of NAD(+) at 2mm caused 95% inhibition of the enzyme, which was also inhibited by thio-NAD(P)(+), heavy-metal ions and thiol-blocking reagents. In cells of strain PAO 1 grown on a proline-medium the activity of gamma-glutamyl kinase and gamma-glutamyl phosphate reductase was about 40% lower than in cells grown on a glutamate medium. No repressive effect of proline on 1-pyrroline-5-carboxylate reductase was observed.  相似文献   

2.
1. A prolyl-s-RNA synthetase (prolyl-transfer RNA synthetase) has been purified about 250-fold from seed of Phaseolus aureus (mung bean), a species not producing azetidine-2-carboxylic acid, and more than 10-fold from rhizome apices of Polygonatum multiflorum, a liliaceous species containing azetidine-2-carboxylic acid. The latter enzyme was unstable during ammonium sulphate fractionation. 2. The enzymes exhibited different substrate specificities towards the analogue. That from Phaseolus, when assayed by the ATP-PP(i) exchange, showed azetidine-2-carboxylic acid activation at about one-third the rate with proline. Both labelled imino acids gave rise to a labelled aminoacyl-s-RNA. The enzyme from Polygonatum, however, activated only proline. 3. The enzyme from Polygonatum also formed a labelled prolyl-s-RNA with Phaseolus s-RNA but at a lower rate than when the Phaseolus enzyme was used. No reaction occurred when the Phaseolus enzyme was coupled with Polygonatum s-RNA, and only a very slight one was observed when both enzyme and s-RNA came from Polygonatum. 4. Protein preparations from seeds of Pisum sativum, another species not producing azetidine-2-carboxylic acid, also activated the analogue in addition to proline, whereas those from rhizome and seeds of Convallaria, the species from which the analogue was originally isolated, failed to activate it. However, a liliaceous species not producing the analogue, Asparagus officinalis, activated it. 5. Of the other proline analogues investigated, only 3,4-dehydro-dl-proline and l-thiazolidine-4-carboxylic acid were active with the enzyme preparation from Phaseolus. 6. pH optima of 7.9 and 8.4 were established for the enzymes from Phaseolus and Polygonatum respectively. 7. The Phaseolus enzyme was specific for ATP and PP(i). Mn(2+) partially replaced the requirement for Mg(2+) as cofactor. Preincubation with p-chloromercuribenzoate at a concentration of 0.5mm or higher produced over 99% inhibition of the Phaseolus enzyme. One-half the enzymic activity was destroyed by preheating for 5min. at 62 degrees in tris-hydrochloric acid buffer, pH7.9. 8. All experimental evidence supports the hypothesis that azetidine-2-carboxylic acid and proline are activated by the same enzyme in Phaseolus preparations, whereas the analogue was inactive in all Polygonatum preparations. The possible nature of this different substrate behaviour is discussed.  相似文献   

3.
Proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase (Pro/P5C dehydrogenase), a bifunctional enzyme catalyzing the two consecutive reactions of the oxidation of proline to glutamic acid, was purified from Pseudomonas aeruginosa strain PAO1. Pro/P5C dehydrogenase oxidized L-proline in an FAD-dependent reaction to L-delta 1-pyrroline-5-carboxylic acid and converted this intermediate with NAD or NADP as cosubstrates to L-glutamic acid. The purification procedure involved DEAE-cellulose chromatography, affinity chromatography on Matrex gel red A and gel filtration on Sephadex G-200. It resulted, after 40-fold purification with 11% yield, in a homogeneous preparation (greater than 98% pure). The molecular weight of the single subunit was determined as 119,000. Gel filtration of purified Pro/P5C dehydrogenase yielded a molecular weight of 242,000 while polyacrylamide gel electrophoresis under native conditions led to the appearance of two catalytically active forms of the enzyme with molecular weights of 241,000 and 470,000. Manual Edman degradation revealed proline, alanine and aspartic acid as the N-terminal amino acid sequence. Pro/P5C dehydrogenase was highly specific for the L-forms of proline and delta 1-pyrroline-5-carboxylic acid. Its apparent Km values were 45 mM for L-proline, 0.03 mM for NAD and 0.17 mM for NADP. The saturation function for delta 1-pyrroline-5-carboxylic acid was non-hyperbolic.  相似文献   

4.
The characteristics of the enzyme Delta(1)-pyrroline-5-carboxylic acid dehydrogenase from etiolated barley (Hordeum distichum) shoots have been examined. The bulk of the enzyme activity was found in the 10,000g pellet fraction, this activity being displayed only after detergent treatment of the suspended pellet. The enzyme was most active at pH 8, and activity was NAD-dependent. Enzyme activity was unaffected by either mannitol or sucrose in the reaction mixture up to a concentration of 0.45 m but was strongly inhibited by Cl(-) and, to a lesser extent, SO(4) (2-). The inhibition attributable to KCl was reversed by increasing the concentration of Delta(1)-pyrroline-5-carboxylic acid in the reaction mixture.  相似文献   

5.
A sensitive method for the determination of Delta(9)-tetrahydrocannabinol and its metabolites, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid and 11-hydroxy-Delta(9)-tetrahydrocannabinol, in rat and guinea pig plasma was developed using high-performance liquid chromatographic separation with electrospray ionization mass spectrometry detection and a simple liquid-liquid extraction technique. The mean recoveries for Delta(9)-tetrahydrocannabinol, 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid, and 11-hydroxy-Delta(9)-tetrahydrocannabinol were 96, 92, and 85%, respectively. The lower limit of quantification (LLOQ) for all three compounds was 5 ng/ml and the limit of detection (LOD) was 2 ng/ml. This assay method utilizes the increased sensitivity and selectivity of mass spectrometric (MS) detection and a simple extraction step for the determination of Delta(9)-tetrahydrocannabinol and its metabolites in plasma, and thus yields a more efficient pharmacokinetic analysis method than has previously been described.  相似文献   

6.
In this report the optimization of biosynthesis of tacrolimus, the immunosupressant widely used in transplantology and dermatology was described. The enhancement of the productivity of Streptomyces tsukubaensis strain was achieved by development of new precursors of tacrolimus biosynthesis, which should allow to reduce the costs of the process.The enrichment of the fermentation medium in pyridine-2-carboxylic acid (picolinic acid), piperidine-2-carboxylic acid (pipecolic acid), pyridine-3-carboxylic acid (nicotinic acid) or pyridine-3-carboxylic acid amide (nicotinamide) caused significant growth of the productivity of tacrolimus: 7-fold, 6-fold, 3-fold and 5-fold, respectively. The optimum concentration of the precursors in medium was 0.0025–0.005%. The investigation of the kinetics of tacrolimus biosynthesis together with the analysis of the impact of tested compounds on the culture growth and NAD (nicotinamide adenine dinucleotide) concentration in S. tsukubaensis cells enables to put forward a hypothesis concerning the mechanism of action of tested culture medium additives. The compounds active as tacrolimus precursors (pipecolic and picolinic acids) are more effective than these active mainly as the growth promoters (nicotinamide and nicotinic acid). Nicotinamide and nicotinic acid – vitamin B3 components – promote S. tsukubaensis growth most probably due to the stimulation of NAD/NADP biosynthesis.  相似文献   

7.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

8.
l-Proline is the only, out of 20 essential, amino acid that contains a cyclized substituted α-amino group (is formally an imino acid), which restricts its conformational shape. The synthesis of well-defined homo- and copolymers of l-proline has been plagued either by the low purity of the monomer or the inability of most initiating species to polymerize the corresponding N-carboxy anhydride (NCA) because they require a hydrogen on the 3-N position of the five-member ring of the NCA, which is missing. Herein, highly pure l-proline NCA was synthesized by using the Boc-protected, rather than the free amino acid. The protection of the amine group as well as the efficient purification method utilized resulted in the synthesis of highly pure l-proline NCA. The high purity of the monomer and the use of an amino initiator, which does not require the presence of the 3-N hydrogen, led for the first time to well-defined poly(l-proline) (PLP) homopolymers, poly(ethylene oxide)-b-poly(l-proline), and poly(l-proline)-b-poly(ethylene oxide)-b-poly(l-proline) hybrids, along with poly(γ-benzyl-l-glutamate)-b-poly(l-proline) and poly(Boc-l-lysine)-b-poly(l-proline) copolypeptides. The combined characterization (NMR, FTIR, and MS) that results for the l-proline NCA revealed its high purity. In addition, all synthesized polymers exhibit high molecular and compositional homogeneity.  相似文献   

9.
Disruption of the Saccharomyces cerevisiae mitochondrial NADH kinase POS5 increases the mitochondrial mutation rate 50-fold. Whereas most multicellular eukaryotic genomes have one NADH kinase gene, the yeast genome contains three distinct genes encoding NAD/H kinase activity. To determine if all three genes are essential for viability we constructed combinations of gene knockouts. We show that only the pos5Deltautr1Delta combination is synthetically lethal, demonstrating an essential overlapping function, and showing that NAD/H kinase activity is essential for eukaryotic viability. The single human NAD/H kinase gene can rescue the lethality of the double knockout in yeast, demonstrating that the single human gene can fill the various functions provided by the three yeast genes. The human NAD/H kinase gene harbors very common sequence variants, but all of these equally complement the synthetic lethality in yeast, illustrating that each of these are functionally wild-type. To understand the molecular mechanism of the mitochondrial genome instability of pos5 mutation we performed gene expression analysis on the pos5Delta. The pos5Delta resulted in an increase in expression of most of the iron transport genes including key genes involved in iron-sulfur cluster assembly. Decreased expression occurred in many genes involved in the electron transport chain. We show that the pos5Delta expression pattern is similar to the frataxin homolog knockout (yfh1Delta), the yeast model for Friedreich's ataxia. These combined data show that the POS5 NAD/H kinase is an important protein required for a variety of essential cellular pathways and that deficient iron-sulfur cluster assembly may play a critical role in the mitochondrial mutator phenotype observed in the pos5Delta.  相似文献   

10.
The structure of thiazole synthase (Thi4) from Saccharomyces cerevisiae was determined to 1.8 A resolution. Thi4 exists as an octamer with two monomers in the asymmetric unit. The structure reveals the presence of a tightly bound adenosine diphospho-5-(beta-ethyl)-4-methylthiazole-2-carboxylic acid at the active site. The isolation of this reaction product identifies NAD as the most likely precursor and provides the first mechanistic insights into the biosynthesis of the thiamin thiazole in eukaryotes. Additionally, the Thi4 structure reveals the first protein structure with a GR(2) domain that binds NAD instead of FAD, raising interesting questions about how this protein evolved from a flavoenzyme to a NAD binding enzyme.  相似文献   

11.
A proline analogue, 4,5-dehydro-l-pipecolic acid (baikiain) induces the formation in Salmonella typhimurium of the two enzymes catalyzing the degradation of proline, proline oxidase and Delta(1)-pyrroline-5-carboxylic acid (P5C) dehydrogenase. The level of induction by 20 mm baikiain is about 10% of the maximum level induced by proline. Since the analogue is a substrate of proline oxidase the first enzyme of the proline catabolic pathway, the oxidation derivative rather than baikiain itself might be the actual effector. Baikiain is also an inducer of proline oxidase in Escherichia coli K-12 and E. coli W. An additional effect of this analogue on proline degradation in S. typhimurium is inhibition of P5C dehydrogenase. At a concentration of 5 x 10(-4)m, baikiain inhibits completely the growth of strains constitutive for proline oxidase. This inhibition, which can be overcome by proline, occurs in the presence or absence of P5C dehydrogenase activity. Three spontaneously occurring mutants resistant to baikiain were isolated from constitutive strains. All are pleiotropic-negative for the proline-degrading enzymes. The sites of these mutations are linked to the put region. Although the mechanism of toxicity has not been determined, baikiain provides a simple and direct selection for obtaining mutants unable to degrade proline. In addition, it allows selection for strains with an inducible rather than constitutive phenotype.  相似文献   

12.
Addition of casein hydrolysate to suspensions of washed, nonpigmented, nonproliferating Serratia marcescens incubating at 27 C induced biosynthesis of prodigiosin. Four amino acids of casein hydrolysate, dl-aspartic acid, l-glutamic acid, l-proline, and l-alanine caused formation of pigment when added individually. dl-Ornithine also was effective. Optimal concentrations for maximal pigmentation were 5 to 10 mg/ml; at these high concentrations, d-serine also induced biosynthesis of some prodigiosin. dl-Alanine and -ornithine were as effective as the l-iosomers, but l-glutamic acid and l-proline gave better responses than their racemic mixtures. Kinetics of prodigiosin biosynthesis after addition of dl-alanine (20 mg/ml) were similar to those of cells suspended in 0.2% casein hydrolysate. The other amino acids were less effective. Addition of 5 mg of dl-alanine or casein hydrolysate per ml to minimal medium increased by 30% the amount of prodigiosin formed by growing cells after incubation for 7 days at 27 C. Cultures grown for 7 days at 27 C in 0.2% casein hydrolsate formed more prodigiosin than did suspensions of nonproliferating cells containing individual amino acids or casein hydrolysate. However, more pigment was produced by cells suspended in l-alanine (5 mg/ml) or l-proline (10 mg/ml) than when suspended in 0.4% natural or synthetic casein hydrolysate. Filtrates from suspensions of nonproliferating cells forming pigment in l-proline induced more rapid formation of prodigiosin, but filtrates from suspensions in dl-alanine did not. The data supported the hypothesis that pyrrole groups of prodigiosin may be synthesized from 5-carbon amino acids such as proline, ornithine, aspartic, and glutamic acids, but the role of alanine is unknown.  相似文献   

13.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either lier or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injected of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from L-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from L-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of L-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

14.
Crystal structure of human pyrroline-5-carboxylate reductase   总被引:2,自引:0,他引:2  
Pyrroline-5-carboxylate reductase (P5CR) is a universal housekeeping enzyme that catalyzes the reduction of Delta(1)-pyrroline-5-carboxylate (P5C) to proline using NAD(P)H as the cofactor. The enzymatic cycle between P5C and proline is very important for the regulation of amino acid metabolism, intracellular redox potential, and apoptosis. Here, we present the 2.8 Angstroms resolution structure of the P5CR apo enzyme, its 3.1 Angstroms resolution ternary complex with NAD(P)H and substrate-analog. The refined structures demonstrate a decameric architecture with five homodimer subunits and ten catalytic sites arranged around a peripheral circular groove. Mutagenesis and kinetic studies reveal the pivotal roles of the dinucleotide-binding Rossmann motif and residue Glu221 in the human enzyme. Human P5CR is thermostable and the crystals were grown at 37 degrees C. The enzyme is implicated in oxidation of the anti-tumor drug thioproline.  相似文献   

15.
Pyrroline-5-carboxylate reductase (P5CR) catalyzes the reduction of Delta1-pyrroline-5-carboxylate (P5C) to proline with concomitant oxidation of NAD(P)H to NAD(P)(+). The enzymatic cycle between P5C and proline is very important in many physiological and pathological processes. Human P5CR was over-expressed in Escherichia coli and purified to homogeneity by chromatography. Enzymatic assays of the wild-type protein were carried out using 3,4-dehydro-L-proline as substrate and NAD(+) as cofactor. The homopolymer was characterized by cross-linking and size exclusion gel filtration chromatography. Human P5CR was crystallized by the hanging-drop vapor-diffusion method at 37 degrees C. Diffraction data were obtained to a resolution of 2.8A and were suitable for high resolution X-ray structure determination.  相似文献   

16.
Transport of l-proline into Saccharomyces cerevisiae K is mediated by two systems, one with a KT of 31 μM and Jmax of 40 nmol · s?1 · (g dry wt.)?1, the other with KT > 2.5 mM and Jmax of 150–165 nmol · s?1 · (g dry wt.)?1, The kinetic properties of the high-affinity system were studied in detail. It proved to be highly specific, the only potent competitive inhibitors being (i) l-proline and its analogs l-azetidine-2-carboxylic acid, sarcosine, d-proline and 3,4-dehydro-dl-proline, and (ii) l-alanine. The other amino acids tested behaved as noncompetitive inhibitors. The high-affinity system is active, has a sharp pH optimum at 5.8–5.9 and, in an Arrhenius plot, exhibits two inflection points at 15°C and 20–21°C. It is trans-inhibited by most amino acids (but probably only the natural substrates act in a trans-noncompetitive manner) and its activity depends to a considerable extent on growth conditions. In cells grown in a rich medium with yeast extract maximum activity is attained during the stationary phase, on a poor medium it is maximal during the early exponential phase. Some 50–60% of accumulated l-proline can leave cells in 90 min (and more if washing is done repeatedly), the efflux being insensitive to 0.5 mM 2,4-dinitrophenol and uranyl ions, to pH between 3 and 7.3, as well as to the presence of 10–100 mM unlabeled l-proline in the outside medium. Its rate and extent are increased by 1% d-glucose and by 10 μg nystatin per ml.  相似文献   

17.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either liver or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injection of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from l-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from l-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of l-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

18.
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.  相似文献   

19.
We have cloned, sequenced, and expressed a human cDNA encoding 1-d-myo-inositol-3-phosphate (MIP) synthase (hINO1). The encoded 62-kDa human enzyme converted d-glucose 6-phosphate to 1-d-myo-inositol 3-phosphate, the rate-limiting step for de novo inositol biosynthesis. Activity of the recombinant human MIP synthase purified from Escherichia coli was optimal at pH 8.0 at 37 degrees C and exhibited K(m) values of 0.57 mm and 8 microm for glucose 6-phosphate and NAD(+), respectively. NH(4)(+) and K(+) were better activators than other cations tested (Na(+), Li(+), Mg(2+), Mn(2+)), and Zn(2+) strongly inhibited activity. Expression of the protein in the yeast ino1Delta mutant lacking MIP synthase (ino1Delta/hINO1) complemented the inositol auxotrophy of the mutant and led to inositol excretion. MIP synthase activity and intracellular inositol were decreased about 35 and 25%, respectively, when ino1Delta/hINO1 was grown in the presence of a therapeutically relevant concentration of the anti-bipolar drug valproate (0.6 mm). However, in vitro activity of purified MIP synthase was not inhibited by valproate at this concentration, suggesting that inhibition by the drug is indirect. Because inositol metabolism may play a key role in the etiology and treatment of bipolar illness, functional conservation of the key enzyme in inositol biosynthesis underscores the power of the yeast model in studies of this disorder.  相似文献   

20.
Delta(1)-Pyrroline-5-carboxylate reductase (P5CR) (EC 1.5.1.2. L-proline: NAD(P)-5-oxidoreductase), the second enzyme in the proline biosynthetic pathway, was purified from spinach (Spinacia oleracea L.) leaves. Following ammonium sulfate fractionation, purification was performed by several chromatographic methods: Blue Cellulofine, DEAE-TOYOPEARL, Sephacryl S-300 HR, and POROS QE/M. Two isoenzymes resolved by anion exchange chromatography were designated P5CR-1 and P5CR-2. Only P5CR-2 was purified from the intact chloroplasts, indicating differential distribution of the isoenzymes. P5CR isoenzymes, P5CR-1 and P5CR-2, are a homopolymer with an apparent molecular mass of 310 kDa, consisting of 10 to 12 subunits of about 28.5 kDa. P5CR-1 and P5CR-2 showed K(m) values of 9 and 19 microM for NADPH and values of 0.122 and 0.162 mM for Delta(1)-pyrroline-5-carboxylate (P5C), respectively. We decided partial amino acid sequences of P5CR-1 which showed the 70 to 80% homology to the deduced amino acid sequences of several plant P5CR cDNAs. Both isoenzymes had much lower affinity for NADH than for NADPH and were inhibited by free ATP and Mg(2+) ion. The inhibition was partially mitigated when ATP and Mg(2+) were added simultaneously to the reaction mixture. Cations at high concentration were inhibitory to P5CR activity. Interestingly, P5CR-2 was more stable to heat treatment at 40 degrees C than P5CR-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号