首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frenkel C 《Plant physiology》1972,49(5):757-763
Protein extracts were obtained from climacteric fruits (pear, tomato) and nonclimacteric fruits (blueberry) during various stages of ripening. The use of a gel electrophoresis technique revealed a consistent reinforcement in indoleacetic acid oxidase but not in peroxidase isozymes during ripening. The significance of the results is discussed in relation to the resistance of fruits to ripening and ethylene action.  相似文献   

2.
A vacuum infiltration technique was used to apply an anti-auxin, α-(p-chlorophenoxy) isobutyric acid to mature green pears (Pyrus communis var. Bartlett). Application of α-(p-chlorophenoxy) isobutyric acid, at 0.02, 0.2, and 2.0 mm progressively accelerated the onset of chlorophyll degradation, softening, and CO2 evolution. The action of α(p-chlorophenoxy) isobutyric acid is apparently independent of ethylene, since the auxin analogue depressed ethylene evolution and could overcome ethylene deficiency in fruit ripening under hypobaric conditions.  相似文献   

3.
Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.  相似文献   

4.
Observations were made of the effects of several plant regulators, indole-3-acetic acid, kinetin, abscisic acid, and gibberellic acid, as well as of extracts prepared from leaves and fruit stalks on the respiration pattern, ethylene production, and the number of days to ripen of avocado fruits (Persea americana Mill.). These substances were vacuum infiltrated to insure good penetration and distribution. Kinetin, abscisic acid, gibberellic acid, and the extracts had no effect on either ripening time or on the respiration pattern and ethylene production of the fruits. Indoleacetic acid, however, had a marked effect on ripening. At high concentrations (100 and 1000 mum), indoleacetic acid stimulated respiration and induced preclimacteric ethylene production, resulting in accelerated ripening of the fruits. At the low concentrations (1 and 10 mum), it delayed ripening of fruits and suppressed the climacteric respiration and ethylene production. The results reinforce several previous observations with other fruits that auxins may largely constitute ;resistance to ripening' and may be responsible for the lack of ripening shown by unpicked fruits.  相似文献   

5.
Since peroxidase and manganese have been implicated in both auxin destruction and ethylene production, the effect of auxins and high tissue levels of manganese on the peroxidative indoleacetic acid oxidase system and the internal level of ethylene was determined in cotton (Gossypium hirsutum L. cv. Watson GL-7). The highest level of manganese tested produced manganese toxicity symptoms, including necrotic lesions, accompanied by an increase in internal ethylene levels at about 15 days after treatment initiation. Statistically significant increases in indoleacetic acid oxidase and peroxidase activity were first observed 2 days later and were paralleled by tissue manganese levels above 7.4 milligrams per gram dry weight and internal ethylene levels of 0.77 microliters per liter air. Eight hours after application of 2,4-dichlorophenoxyacetic acid or indoleacetic acid, the internal levels of ethylene were increased to above 6.6 microliters per liter air in cotton plants, and levels of this magnitude were maintained for a 72-hour period of observation. Modification of peroxidase and indoleacetic acid oxidase activity in auxintreated plants definitely occurred well after the elevation of internal ethylene levels. While ethylene levels and indoleacetic acid oxidase activity were increased by both experimental approaches, the earlier appearance of increased ethylene indicates that the peroxidative indoleacetic acid oxidase system in cotton is not involved in ethylene synthesis or that this enzyme is not the rate-limiting factor when ethylene synthesis is increased. Ethylene, as well as auxin destruction, may be involved in some of the long term plant responses to toxic levels of manganese. The findings also suggest that auxin-induced ethylene may play a role in the elevation of peroxidase and indoleacetic acid oxidase activity eventually seen in extracts of plants treated with auxins. The data support the assumption that the enzymatic portion of the indoleacetic acid oxidase system in cotton is a peroxidase.  相似文献   

6.
Effects of indoleacetic acid, calcium ions and ethylene on thegrowth of and deposition of different cell wall fractions inthe hypocotyl of Norway spruce (Picea abies (L.) Karst.) seedlingswere investigated. Indoleacetic acid progressively stimulated cellulose depositionas the amount of added Ca2+ increased. In contrast, indoleaceticacid promoted lignification and the deposition of non-cellulosicpolysaccharides only in the absence of added Ca2+ . When Ca2+was added, the indoleacetic acid effect disappeared. Similarly,indoleacetic acid promoted non-cellulosic polysaccharide depositiononly in the absence of ethylene. At increasing ethylene levelsthe effect of indoleacetic acid on non-cellulosic polysaccharidedeposition disappeared and indoleacetic acid instead promotedcellulose deposition. The response to indoleacetic acid depended on the Ca2+ concentrationand on the rate of ethylene production. The relationship betweenindoleacetic acid and Ca2+ seemed complex, but clearly indoleaceticacid could partially overcome a Ca2+ deficiency. The resultssuggest that ethylene may be a factor of particular importancefor the type of polysaccharide deposition during cell wall formation. Key words: Calcium, cell wall, conifers, ethylene, indoleacetic acid  相似文献   

7.
Cycloheximide inhibited ethylene production in excised pea root tips treated with high levels of indoleacetic acid (100 μm and 10 μm). In contrast, cycloheximide did not inhibit ethylene production induced by a lower concentration (1 μm) of indoleacetic acid unless it was added 2 hours before the indoleacetic acid treatment. These observations suggest that indoleacetic acid has two effects on the enzyme system involved in ethylene synthesis. At low concentrations (1 μm) indoleacetic acid increases ethylene production without protein synthesis, whereas at the higher concentrations, the synthesis of new protein is associated with increased ethylene production.  相似文献   

8.
Mechanism of Auxin-induced Ethylene Production   总被引:24,自引:22,他引:2       下载免费PDF全文
Indoleacetic acid-induced ethylene production and growth in excised segments of etiolated pea shoots (Pisum sativum L. var. Alaska) parallels the free indoleacetic acid level in the tissue which in turn depends upon the rate of indoleacetic acid conjugation and decarboxylation. Both ethylene synthesis and growth require the presence of more than a threshold level of free endogenous indoleacetic acid, but in etiolated tissue the rate of ethylene production saturates at a high concentration and the rate of growth at a lower concentration of indoleacetic acid. Auxin stimulation of ethylene synthesis is not mediated by induction of peroxidase; to the contrary, the products of the auxin action which induce growth and ethylene synthesis are highly labile.  相似文献   

9.
Endogenous peroxide levels in pear fruit (Pyrus communis) were measured using a titanium assay method, and were found to increase during senescence in both Bartlett and Bosc varieties. Application of glycolic acid or xanthine, serving as substrates for the formation of H2O2, increased the peroxide content of the tissue and accelerated the onset of ripening, as measured by increased softening and ethylene evolution. Application of ethylene also induced increased peroxide levels. Ripening processes were similarly promoted when peroxides were conserved by inhibiting the activity of catalase with hydroxylamine or potassium cyanide. By comparison, the inhibition of glycolate oxidase with alphahydroxy-2-pyridinemethanesulfonic acid decreased the peroxide content of the tissue and delayed the onset of ripening. These results indicate that the onset of ripening correlates with the peroxide content of fruit tissues as occurring under normal conditions or as influenced by the treatments. Hydrogen peroxide may be involved in oxidative processes required in the initiation and the promotion of ripening.  相似文献   

10.
以猕猴桃(Actinidia deliciosa(A.Chev.)C.F.Liang et A.R.Ferguson cv.Bruno)果实为试材,研究乙酰水杨酸(ASA)与乙烯处理对果实内源水杨酸(SA)含量变化以及后熟软化相关因子的影响,探讨SA在果实成熟衰老进程的作用.研究结果表明:果实后熟软化进程中,内源SA水平呈下降变化,组织中SA水平与果实硬度变化呈极显著正相关关系(r=0.969 4**),ASA处理可显著地维持组织中较高的SA水平,抑制脂氧合酶(LOX)和丙二烯氧合酶(AOS)活性增加,减低O-.2生成速率,维持细胞膜稳定性,进而抑制了乙烯生物合成或推迟乙烯跃变的到来,延缓了果实后熟软化进程,这些效应主要表现在乙烯跃变之前或乙烯跃变前期;相反,外源乙烯处理则显著降低果实组织中内源SA水平,促进LOX和AOS活性的增加,促使O-.2积累,增加了细胞膜透性,促使乙烯跃变的提前到来,加速了果实的后熟软化.推测组织中的内源SA水平与细胞膜脂过氧化作用密切相关,外源ASA可能作为一种O-.2等自由基的清除剂或是细胞膜稳定剂在组织成熟衰老过程中起作用.  相似文献   

11.
We studied the relationship between ethylene and gravity-induced upward bending of bermudagrass (Cynodon dactylon L. Pers.) stolons. Ethylene production begins within 3 hours of the onset of gravistimulation, and increases thereafter until the 15th hour, after which it declines. There is a close positive relationship between ethylene production and upward bending during the first 12 hours of gravistimulation. Incubation of stolons with AgNO3 did not prevent ethylene evolution but delayed upward bending. In addition, ethylene production was 10-fold greater and peaked earlier in gravistimulated nodes incubated with 1-aminocyclopropane 1-carboxylic acid. The gravitational stimulation could be due to an increase in both 1-aminocyclopropane 1-carboxylic acid synthase and the ethylene forming enzyme. The results suggest that ethylene promotes the activity of indoleacetic acid.  相似文献   

12.
Lau OL  Yang SF 《Plant physiology》1973,51(6):1011-1014
In hypocotyl segments of mung bean (Phaseolus mungo L.) seedlings, exogenously supplied indoleacetic acid was rapidly conjugated mainly into indoleacetylaspartic acid, which was inactive in inducing ethylene production. Kinetin is known to stimulate indoleacetic acid-induced ethylene production. The mechanism of kinetin action on indoleacetic acid-induced ethylene production by hypocotyl segments of mung bean seedlings was studied in relation to indoleacetic acid uptake and indoleacetic acid metabolism. Kinetin enhanced indoleacetic acid uptake during the initial 2-hour incubation and markedly suppressed the conversion of indoleacetic acid to indoleacetic acid conjugates throughout the whole 7-hour incubation. As a result, there was more free indoleacetic acid and less conjugated indoleacetic acid in the segments treated with kinetin than in those receiving no kinetin. A close relationship was demonstrated between the rate of ethylene production and the level of free indoleacetic acid, which was regulated by kinetin.  相似文献   

13.
14.
We investigated the function of the tomato (Lycopersicon esculentum) E8 gene. Previous experiments in which antisense suppression of E8 was used suggested that the E8 protein has a negative effect on ethylene evolution in fruit. E8 is expressed in flowers as well as in fruit, and its expression is high in anthers. We introduced a cauliflower mosaic virus 35S-E8 gene into tomato plants and obtained plants with overexpression of E8 and plants in which E8 expression was suppressed due to co-suppression. Overexpression of E8 in unripe fruit did not affect the level of ethylene evolution during fruit ripening; however, reduction of E8 protein by cosuppression did lead to elevated levels during ripening. Levels for ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), and ACC oxidase mRNA were increased approximately 7-fold in fruit of plants with reduced E8 protein. Levels of ACC synthase 2 mRNA were increased 2.5-fold, and ACC synthase 4 mRNA was not affected. Reduction of E8 protein in anthers did not affect the accumulation of ACC or of mRNAs encoding enzymes involved in ethylene biosynthesis. Our results suggest that the product of the E8 reaction participates in feedback regulation of ethylene biosynthesis during fruit ripening.  相似文献   

15.
16.
17.
The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process.  相似文献   

18.
以"布鲁诺"美味猕猴桃(Actinidia deliciosa cv.Bruno)果实为材料,根据其它植物乙烯受体氨基酸保守区序列,设计简并引物,通过RT-PCR扩增出1个657bp大小的cDNA片段(Ad-ETR1)该片段编码219个氨基酸,与其它植物乙烯受体及其基因的氨基酸及核苷酸同源性在72%~90%之间.Northern杂交结果表明,猕猴桃果实成熟衰老进程中Ad-ETR1 mRNA的积累趋于增加.这种积累的最大值出现在乙烯进入跃变之后;乙烯处理可以促使Ad-ETR1 mRNA最大值提前出现,乙酰水杨酸(ASA)处理则显著抑制Ad-ETR1表达.  相似文献   

19.
Abstract The role of abscisic acid (ABA) in banana fruit ripening was examined with the ethylene binding inhibitor, 1-methylcyclopropene (1-MCP). ABA (0, 10−5, 10−4, or 10−3 mol/L) was applied by vacuum infiltration into fruit. 1-MCP (1 μL/L) was applied by injecting a measured volume of stock gas into sealed glass jars containing fruit. Fruit ripening, as judged by ethylene evolution and respiration associated with color change and softening, was accelerated by 10−4 or 10−3 mol/L ABA. ABA at 10−5 mol/L had no effect. The acceleration of ripening by ABA was greater at 10−3 mol/L than at 10−4 mol/L. ABA-induced acceleration of banana fruit ripening was not observed in 1-MCP treated fruit, especially when ABA was applied after exposure to 1-MCP. Thus, ABA's promotion of ripening in intact banana fruit is at least partially mediated by ethylene. Exposure of ABA-treated fruit to 0.1 μL/L ethylene for 24 h resulted in increased ethylene production and respiration, and associated skin color change and fruit softening. Control fruit (no ABA) was unresponsive to similar ethylene treatments. The data suggest that ABA facilitates initiation and progress in the sequence of ethylene-mediated ripening events, possibly by enhancing the sensitivity to ethylene. Received 29 January 1999; accepted 16 January 2000  相似文献   

20.
Avocado (Persea americana Mill. cv Hass) discs (3 mm thick) ripened in approximately 72 hours when maintained in a flow of moist air and resembled ripe fruit in texture and taste. Ethylene evolution by discs of early and midseason fruit was characterized by two distinct components, viz. wound ethylene, peaking at approximately 18 hours, and climacteric ethylene, rising to a peak at approximately 72 hours. A commensurate respiratory stimulation accompanied each ethylene peak. Aminoethoxyvinyl glycine (AVG) given consecutively, at once and at 24 hours following disc preparation, prevented wound and climacteric respiration peaks, virtually all ethylene production, and ripening. When AVG was administered for the first 24 hours only, respiratory stimulation and softening (ripening) were retarded by at least a day. When AVG was added solely after the first 24 hours, ripening proceeded as in untreated discs, although climacteric ethylene and respiration were diminished. Propylene given together with AVG led to ripening under all circumstances. 2,5-Norbornadiene given continuously stimulated wound ethylene production, and it inhibited climacteric ethylene evolution, the augmentation of ethylene-forming enzyme activity normally associated with climacteric ethylene, and ripening. 2,5-Norbornadiene given at 24 hours fully inhibited ripening. When intact fruit were pulsed with ethylene for 24 hours before discs were prepared therefrom, the respiration rate, ethylene-forming enzyme activity buildup, and rate of ethylene production were all subsequently enhanced. The evidence suggests that ethylene is involved in all phases of disc ripening. In this view, wound ethylene in discs accelerates events that normally take place over an extended period throughout the lag phase in intact fruit, and climacteric ethylene serves the same ripening function in discs and intact fruit alike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号