首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of cyclic adenosine 3':5'-monophosphate (cAMP) on the growth of Avena coleoptile segments over 4 to 10 hours were monitored with a position sensing transducer. At pH 6, cAMP (0.1 mm with and without 2.5 mm glucose; or 2 mm alone) or dibutyryl cAMP (0.1 mm) was added at the beginning of the experiment, or after about 1 hour or after about 6 or 7 hours. Under all conditions tested, cAMP compounds had little or no effect on coleoptile segment elongation. Inasmuch as cAMP does not duplicate the rapid and vigorous elongation obtained with 2 mum auxin, the hypothesis that cAMP is a mediator of auxin activity is not supported by experimental evidence in this system. This conclusion is dependent upon the assumption that the cAMP compounds penetrated the tissue.  相似文献   

2.
The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxintreated tissues (4.5–5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5–6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.Abbreviations FS free space - IAA indole-3-acetic acid This research was supported by a grant from the National Adonautics and space Administration (NASA), NAGW 1394 to R.E.C., NASA grant NAGW-297 to M.L.E., and NASA grant NAG 1849 to D.L.R.  相似文献   

3.
Diffusates from the hypocotyl and leaves of sunflower seedlings ( Helianthus annuus L. cv. Mammoth) contain both auxin and inhibitor(s) of auxin-induced growth. The auxin activity has been evaluated with the conventional Avena coleoptile bioassay employing negative curvature, The inhibitor activity has been determined with a newly developed bioassay, measuring the positive curvature response of the Avena coleoptile. This bioassay has been standardized by the response to 2,3,5-triiodo-benzoic acid. Diffusates from plants in darkness have higher auxin activity and lower inhibitor activity than diffusates from plants in light. Irradiation at 730 nm promotes auxin synthesis in leaves, and! irradiation at 660 nm promotes synthesis of the inhibitor.  相似文献   

4.
The effect of indole-3-acetic acid (IAA) on the elongation rates of 2 mm corn (Zea mays L.) root segments induced by citrate-phosphate buffer (or unbuffered) solutions of pH 4.0 and 7.0 was studied. At pH 7.0, auxin initially reduced the elongation rate in both buffered and unbuffered solutions. Only in buffer at pH 7.0 was auxin at a concentration of 0.1 M found to promote the elongation rate though briefly. THis promoted rate represented only ca. 20% of the rate achieved with only buffer at pH 4.0. Auxin in pH 4.0 buffered and unbuffered solutions only served to reduce the elongation rates of root segments. Some comparative experiments were done using 2 mm corn coleoptile segments. Auxin (pH 6.8) promoted the elongation rate of coleoptile segments to a level equal or greater than the maximal H ion-induced rate. The two responses of root segments to auxin are compared to auxin action in coleoptile growth.  相似文献   

5.
Action of Inhibitors of RNA and Protein Synthesis on Cell Enlargement   总被引:10,自引:6,他引:4       下载免费PDF全文
Further studies with inhibitors of protein synthesis are presented to support the conclusion, drawn from work with chloramphenicol, that protein synthesis is a critical limiting factor in auxin-induced cell expansion. The indoleacetic acid-induced elongation of oat coleoptile sections was strongly inhibited by dl-p-fluorophenylalanine, and the inhibition is antagonized by phenylalanine. Puromycin at 10(-4)m very strongly inhibited the indoleacetic acid-induced growth of oat coleoptile and artichoke tuber sections and exerted a less powerful effect on pea stem sections. As found earlier with chloramphenicol, concentrations of puromycin effective in inhibiting the growth of coleoptile sections had quantitatively similar effects on protein synthesis, as measured by the incorporation of C(14)-leucine into protein of the coleoptile tissue. Several analogues of RNA bases were also tested, but while 8-azaguanine very strongly inhibited growth of artichoke tuber disks, 6-azauracil was the only one of this group clearly inhibitory to growth in coleoptile or pea stem sections. Actinomycin D actively inhibited both elongation and the incorporation of C(14)-leucine into protein in oat coleoptile sections. Inhibition of the 2 processes went closely parallel. Actinomycin D also powerfully inhibited growth of artichoke tuber disks. All the compounds effective in inhibiting growth generally inhibited the uptake of leucine as well.The possibility that auxin causes cell enlargement in plants by inducing the synthesis of a messenger RNA and of one or more new but unstable enzymes, is discussed. Possible but less favored alternative explanations are: A) that auxin induces synthesis of a wall protein, or B) that the continued synthesis of some other unstable protein (by a process independent of auxin) may be a prerequisite for cell enlargement.  相似文献   

6.
J. G. Roddick 《Planta》1971,102(2):134-139
Summary The steroidal alkaloid tomatine did not enhance elongation of oat coleoptile and first internode sections, or of wheat coleoptile sections. Higher concentrations of the alkaloid inhibited elongation and interacted antagonistically with IAA. Although 10-4 M tomatine alone did not influence elongation of oat coleoptile sections, it did reduce growth response to exogenous IAA. Tomatine concentrations less than 10-4 M did not influence response to IAA. The auxin activity of tomatine, reported by Vendrig, was therefore not confirmed.  相似文献   

7.
Victorin, the pathotoxin from the host-specific pathogen, Helminthosporium victoriae, promotes the growth of coleoptile segments when given at concentrations that are high but which still show selective effects on susceptible and resistant tissue. The latent period in the growth response of both susceptible and resistant tissue is about 3.6 minutes compared to 11.0 minutes in the response of these tissues to auxin. The victorinpromoted rate of elongation of 8-millimeter segments is about 0.2 millimeter per hour in susceptible tissue and about 0.1 millimeter per hour in resistant tissue compared to about 0.4 millimeter per hour in response to auxin. At low concentrations, the toxin has no growth-promoting effect in either susceptible or resistant coleoptile segments. Over a wide range of concentrations, victorin inhibits the growth response of susceptible tissue to auxin completely while having no effect on the response of resistant tissue to auxin.  相似文献   

8.
Summary When cytoplasmie streaming in oat and maize coleoptile cells is completely inhibited by cytochalasin B (CB), polar transport of auxin (indole-3-acetic acid) continues at a slightly reduced rate. Therefore, cytoplasmic streaming is not required for polar transport. Auxin induces elongation in CB-inhibited coleoptile and pea stem segments, but elongation rate is reduced about 40% by CB. Therefore, stimulation of cytoplasmic streaming cannot be the means by which auxin promotes cell elongation, but streaming may be beneficial to elongation growth although not essential to it. A more severe inhibition of elongation develops after several hours in CB. With coleoptiles this could be due to inhibition of sugar uptake; in pea tissue it may be due to permeability changes and cytoplasmic degeneration. CB does not disorganize or disorient microfilament bundles when it inhibits streaming in maize, but appears instead to cause hypercondensation of microfilament material.  相似文献   

9.
Jacobs M  Ray PM 《Plant physiology》1976,58(2):203-209
A pH microelectrode has been used to investigate the auxin effect on free space pH and its correlation with auxin-stimulated elongation in segments of pea (Pisum sativum) stem and maize (Zea mays var. Bear Hybrid) coleoptile tissue. Auxin induces a decrease in free space pH in both tissues. In maize coleoptiles, free space pH begins to fall within about 12 minutes of exposure to auxin and decreases by about 1 pH unit by approximately 30 minutes. In pea, pH begins to decrease within an average of 15 to 18 minutes of exposure to auxin and falls by about 0.9 pH unit by approximately 40 minutes. Auxin-stimulated elongation, measured in the same two tissues similarly prepared, appears in maize at the earliest 18 minutes after auxin application, while in pea it appears at the earliest 21 to 24 minutes after auxin application. The auxin analogs p-chlorophenoxyisobutyric acid and phenylacetic acid do not stimulate elongation above control levels in maize or pea tissue segments and do not cause a decrease in free space pH in either tissue. These findings are consistent with the acid secretion theory of auxin action.  相似文献   

10.
Evans ML  Ray PM 《Plant physiology》1973,52(2):186-189
The recently reported growth-promoting ability of 3-methyl-eneoxindole was examined in order to test the hypothesis that indole-3-acetic acid acts as a growth promoter only after oxidative conversion to 3-methyleneoxindole. Methyleneoxindole was synthesized from indole-3-acetic acid and N-bromosuccinimide, and its identity was confirmed by ultraviolet absorption, infrared absorption, mass spectrometry, and melting point. Methyleneoxindole was found to lack growth-promoting activity in coleoptile and pea (Pisum sativum) stem segments. Chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid, was found to have no inhibitory effect on growth promotion by indole-3-acetic acid. It is concluded that 3-methyleneoxindole is inactive as a growth promoter and therefore does not mediate the action of auxin on cell elongation.  相似文献   

11.
The biological activity of 20 l-alpha-amino acid conjugates of indole-3-acetic acid (IAA) to stimulate cell elongation of Avena sativa coleoptile sections and to stimulate growth of soybean cotyledon tissue cultures has been examined at concentrations of 10(-4) to 10(-7)m. In the Avena coleoptile test, most of the amino acid conjugates stimulated elongation. Several of the conjugates stimulated as much elongation as IAA but their half-maximum concentrations tended to be higher. Some of the more active conjugates were alanine, glycine, lysine, serine, aspartic acid, cystine, cysteine, methionine, and glutamic acid.In the soybean cotyledon tissue culture test, all of the l-alpha-amino acid conjugates of IAA stimulated growth except for the phenylalanine, histidine, and arginine conjugates. Most of the conjugates produced responses at least as great as that caused by IAA. Conjugates with half-maximum concentrations lower than IAA included cysteine, cystine, methionine, and alanine. These conjugates exceed the IAA-induced callus growth at all tested concentrations. Other conjugates significantly better than IAA at 10(-6)m were serine, glycine, leucine, proline, and threonine.  相似文献   

12.
Inhibition of Cell Elongation in Avena Coleoptile by Hydroxyproline   总被引:6,自引:6,他引:0       下载免费PDF全文
A study has been made of the hydroxyproline-induced inhibition of elongation of Avena coleoptile tissues. The isomers of 4-hydroxyproline differ in their effectiveness; only the L isomers are growth inhibitors with the cis form (allohydroxyproline) being more effective than the trans form (hydroxyproline).Hydroxyproline differs from other amino acid antagonists and protein synthesis inhibitors in respect to 2 characteristics of the growth inhibition. First, a certain increment of auxin-induced elongation must take place following addition of hydroxyproline before the growth is inhibited. In contrast, pretreatment with other amino acid antagonists or protein synthesis inhibitors completely eliminates the ability of Avena coleoptile sections to respond to auxin. Secondly, sucrose markedly increases the magnitude of the hydroxyproline inhibition; i.e., sucrose acts to inhibit rather than promote growth when in the presence of hydroxyproline.It appears that hydroxyproline is a specific inhibitor for the synthesis of some factor which is utilized in elongation. Following addition of hydroxyproline, auxin-induced elongation continues until the pool of this factor is exhausted; then elongation is inhibited.  相似文献   

13.
The auxin activity of OAA was studied. The assays used were the Avena coleoptile curvature and section tests, and the first internode test. OAA was completely inactive to these assays. Physical tests indicated no color reaction with modified Salkowski reagent (Gordon-Weber) and no activity of any of the biochromatograms run with OAA. These data indicate that OAA is inactive as an auxin due to its characteristics of structural difference from IAA and further lends some speculation as to the site of activity of IAA as an auxin.  相似文献   

14.
Mode of action of FC was compared with that of auxin in differentexperimental systems and the following results were obtained.
  1. FC, as well as auxin, primarily induced elongation of the epidermisof pea epicotyl segments, but it also promoted elongation ofthe inner tissue, as judged by its action in split stem tests,elongation of hollow-cylinder segments and elongation of unpeeledand peeled segments.
  2. FC decreased the minimum stress relaxationtime (T0) and increasedthe extensibility (mm/gr) of the epidermalcell wall of peaepicotyl segments, as did auxin.
  3. FC failedto induce expansion growth of Jerusalem artichoketuber sliceswhen given alone or in combination with kinetinor gibberellicacid.
  4. FC at concentrations lower than 10–6 M, when givenwithauxin at concentrations lower than 0.03 mg/liter, promotedelongationof Avena coleoptile segments in an additive manner,to achievethe maximum elongation at higher concentrations.
  5. An antiauxin, 2,4,6-trichlorophenoxyacetic acid, inhibitedtheelongation of Avena coleoptile segments due to auxin butnotthat due to FC.
  6. Nojirimycin, an inhibitor of ß-glycosidases,inhibitedelongation of pea internode segments due not onlyto auxin butalso to FC.
  7. At concentrations more than 10–5MFC promoted root elongationof intact lettuce seedlings, whichwas inhibited by exogenousauxin.
From these results it is concluded that FC and auxin have acommon mechanism, which may involve hydrogen ion extrusion,leading to cell wall loosening and thus cell elongation. Thisgrowth is limited to the extent that the cells are capable ofelongating in response to hydrogen ions. Otherwise there isa definite difference in the mode of actions between FC andauxin, including the nature of cellular receptors for thesetwo compounds. (Received August 29, 1974; )  相似文献   

15.
The effect of a 180° displacement from the normal vertical orientation on longitudinal growth and on the acropetal and basipetal movement of 14C-IAA was investigated in Avena sativa L. and Zea mays L. coleoptile sections. Inversion inhibits growth in intact sections (apex not removed) and in decapitated sections supplied apically with donor blocks containing auxin. Under aerobic conditions, inversion inhibits basipetal auxin movement and promotes acropetal auxin movement, whereas under anaerobic conditions, it does not influence the movement of auxin in either direction. Inversion retards the basipetal movement of the peak of a 30-minute pulse of auxin in corn.

The inversion-induced inhibition of basipetal auxin movement is not explained by an effect of gravity on production, uptake, destruction, exit from sections, retention in tissue, or purely physical movement of auxin. It is concluded that inversion (a) inhibits basipetal transport, the component of auxin movement that is metabolically dependent, and as a result (b) inhibits growth and (c) promotes acropetal auxin movement.

  相似文献   

16.
Racemic 2-(5,7-dichloro-3-indolyl)propionic acid (5,7-Cl(2)-2-IPA) was synthesized from 5,7-dichloroindole-3-acetic acid by successive esterification, methoxycarbonylation, methylation, and double hydrolysis. The racemate was converted to diastereomeric esters of l-menthol; these were separated by recycling HPLC into two optically active diastereomers that were then hydrolyzed with p-TsOH to two optically active enantiomers of 5,7-Cl(2)-2-IPA. The absolute configurations of both these enantiomers were determined by comparing the (1)H-NMR spectra of their diastereomeric l-menthyl esters with those of the diastereomeric l-menthyl esters of 2-(3-indolyl)propionic acid (2-IPA) of known absolute configurations.An assay by the coleoptile elongation of Avena sativa showed the (S)-(+)-enantiomer of 5,7-Cl(2)-2-IPA to have weak auxin activity, whereas the (R)-(-)-antipode had no auxin activity at any concentration tested. Interestingly, the (R)-(-)-enantiomer had antiauxin activity very close to that of 2-(5,7-dichloro-3-indolyl)isobutyric acid (5,7-Cl(2)-IIBA), a strong antiauxin. These data indicate that, of the two methyl groups in its molecule, the antiauxin activity of 5,7-Cl(2)-IIBA was due only to the (R)-methyl group.  相似文献   

17.
Wheat coleoptile sections were treated with a range of auxins and with compounds of related chemical structure which do not exhibit auxin properties. Methods used for measuring the rates of elongation and ethylene evolution of these sections are described. Ethylene was evolved some time after elongation in all cases and increased ethylene production occurred only with compounds showing auxin activity. The results indicate that ethylene evolution was related exponentially to growth. Simultaneous applications of mannitol and 2, 4-dichloro-phenoxyacetic acid (2, 4-D) to wheat sections markedly reduced ethylene evolution compared with the 2, 4-D controls, even though the level of 2, 4-D in the tissue apparently remained unchanged. Ethylene significantly inhibited the elongation of wheat coleoptile sections, and it is suggested that ethylene is a natural plant growth inhibitor which becomes mobilised to limit excessive growth.  相似文献   

18.
玉米胚芽鞘细胞伸长生长进程中,富含羟脯氨酸蛋白质的合成速率同细胞的伸长生长呈负相关,迅速伸长期较低,而伸长近终止阶段出现活性高峰。生长素促进的伸长生长与富含羟脯氨酸蛋白质的合成、累积相关。IAA使胚芽鞘高体切段细胞的伸长生长增加4倍多,细胞中较低的羟脯氨酸蛋白质的合成速率似有利于生长素的促进效应。生长素对伸长细胞中羟脯氨酸蛋白质的转运和在壁中累积有抑制作用。  相似文献   

19.
A specific glucanase was used to liberate a noncellulosic beta-d-glucan from isolated cell walls of Avena sativa coleoptile tissue. Cell walls of this tissue contain as much as 7 to 9 mg of glucan/100 mg of dry wall. Because of the specific action pattern of the enzyme, a linkage sequence of.. 1 --> 4 Glc 1 --> 3 Glc 1 --> 4 Glc.. is indicated and the predominance of trisaccharide and tetrasaccharide as hydrolytic products suggests a rather regular repeating pattern in the polysaccharide. The trisaccharide and the tetrasaccharide are tentatively identified as 3-O-beta-cellobiosyl-d-glucose and 3-O-beta-cellotriosyl-d-glucose, respectively. Recovery of these oligosaccharides following glucanase treatment of native wall material was feasible only after wall-bound glucosidases were inactivated. In the absence of enzyme inactivation the released fragments were recovered as glucose. The beta-d-glucan was not extracted from walls by either hot water or protease treatment.Cell walls prepared from auxin-treated Avena coleoptile segments yielded less glucan than did segments incubated in buffer suggesting an auxin effect on the quantity of this wall component. No IAA-induced change in the ratio of the trisaccharide and tetrasaccharide could be detected, suggesting no shift in the 1,3 to 1,4 linkage ratio. While the enzyme acts directly on the beta-d-glucan, no elongation response was apparent when Avena sections were treated with the purified glucanase. The presence of the glucan was not associated with any wound response which could be attributed to the preparation of coleoptile segments. The relationship of glucan metabolism to auxin growth responses is discussed.  相似文献   

20.
Brassinolide-induced elongation and auxin   总被引:2,自引:0,他引:2  
Segments from the hook and subhook zone of the stem of 6-day-old etiolated Pisum sativum L. cv. Victory Freezer seedlings were used to study the relationship between brassinolide and auxin in the promotion of elongation. Minor changes in exogenous indole-3-acetic acid or4-chloroindole-3-acetic acid concentration affected the kinetics markedly and the ethylene generator ethephon overcame brassinolide-induced elongation in an antagonistic interaction. Brassinolide-induced elongation was markedly inhibited by low concentrations of the cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile, and diagnostic concentrations of the antiauxin 2-( p -chlorophenoxy) isobutyric acid did not affect brassinolide-induced elongation. As the characteristics of auxin-induced growth are not displayed in brassinolide-induced elongation of the upper stem segment, it is proposed that brassinolide does not depend on auxin as a mediator in the promotion of elongation of younger tissues but that it can interact in a very complex manner with auxin. In the elongation of more mature tissues, and in bending responses, brassinolide probably accelerates auxin effects. When split, the upper stem segment was unusual in its lack of specific response to growth regulators, and the slight relief of epidermal tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号