首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tanada T 《Plant physiology》1973,51(1):150-153
The phytochrome-mediated attachment of mung bean (Phaseolus vulgaris L., var. Oklahoma 612) root tips on glass is quickly affected by indoleactic acid and abscisic acid at concentrations of 10 nm or less. Indoleacetic acid induces detachment, whereas abscisic acid induces attachment. Both plant regulators rapidly antagonize the action of the other. None of several cytokinins, gibberellins, and ethylene tested over a wide range in concentration had any effect on either attachment or detachment of root tips. It is postulated that phytochrome could control the endogenous levels of indoleacetic acid and abscisic acid and perhaps other hormones under certain circumstances, that this action is the first process initiated by phytochrome, and that indoleacetic acid and abscisic acid act on the plasmalemma to bring about opposing changes in the surface electric charges of plant cells.  相似文献   

2.
Tanada T 《Plant physiology》1973,51(1):154-157
The phytochrome-mediated attachment of mung bean (Phaseolus vulgaris L., var. Oklahoma 612) root tips on glass is quickly affected by indoleactic acid and abscisic acid at concentrations of 10 nm or less. Indoleacetic acid induces detachment, whereas abscisic acid induces attachment. Both plant regulators rapidly antagonize the action of the other. None of several cytokinins, gibberellins, and ethylene tested over a wide range in concentration had any effect on either attachment or detachment of root tips. It is postulated that phytochrome could control the endogenous levels of indoleacetic acid and abscisic acid and perhaps other hormones under certain circumstances, that this action is the first process initiated by phytochrome, and that indoleacetic acid and abscisic acid act on the plasmalemma to bring about opposing changes in the surface electric charges of plant cells.  相似文献   

3.
Light inhibits root elongation, increases ethylene production and enhances the inhibitory action of auxins on root elongation of pea ( Pisum sativum L. cv. Weibulls Marma) seedlings. To investigate the role of ethylene in the interaction between light and auxin, the level of ethylene production in darkness was increased to the level produced in light by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) or benzylaminopurine (BAP). Ethylene production was measured in excised root tips after treatment of intact seedlings for 24 h, while root growth was measured after 48 h. Auxin, at a concentration causing a partial inhibition of root elongation, did not increase ethylene production significantly. A 4-fold increase in ethylene production, caused either by light, 0.1 μ M ACC or 0.1 μ M BAP, inhibited root elongation by 40–50%. The auxins 2,4-dichlorophenoxyacetic acid and indolebutyric acid applied at 0.1 μ M inhibited root elongation by 15–25% in darkness but by 50–60% in light. Supply of ACC or BAP in darkness enhanced the inhibitory effects of auxins to about the same extent as in light. The inhibition caused by the auxins as well as by the BAP was associated with swelling of the root tips. ACC and BAP treatment synergistically increased the swelling caused by auxins. We conclude that auxin and ethylene, when applied or produced in partially inhibitory concentrations, act synergistically to inhibit root elongation and increase root diameter. The effect of light on the response of the roots to auxins is mediated by a light-induced increase in ethylene production.  相似文献   

4.
Gaither DH 《Plant physiology》1975,55(6):1082-1086
The auxin transport inhibitor methyl-2-chloro-9-hydroxyfluorene-9-carboxylate (CFM), a morphactin, inhibits negative geotropism, causes cellular swelling, and induces root hair formation in roots of intact Pisum sativum L. seedlings. In excised pea root tips, CFM inhibits elongation more than increase in fresh weight (swell ratio = 1.3 at 20 mum CFM). CFM growth inhibition was expressed in the presence of ethylene. Indoleacetic acid (IAA) prevented the expression of CFM growth inhibition possibly because IAA inhibited the accumulation of CFM into the tissue sections. CFM inhibited the accumulation of IAA and 2,4-dichlorophenoxyacetic acid into excised root tips. Applying Leopold's (1963. Brookhaven Symp. Biol. 16: 218-234) model for polar auxin transport, this result suggests a possible explanation for CFM inhibition of geotropism in pea roots, i.e. disruption of auxin transport by interfering with auxin binding.  相似文献   

5.
The influence of several plant growth regulators on the growth of the embryonic axes from red- and far-red-(R- and FR-)treated lettuce (Lactuca sativa L., cv. Grand Rapids) seeds was examined; as shown previously, the water potential of the axes from R-treated seeds has been lowered by 3.5–5.6 bars compared to that in axes from FR-treated ones. Kinetin and abscisic acid (ABA), when included in the incubation medium, reduced the elongation of the axes whereas fusicoccin stimulated it; however, these effects were the same in axes of both R- and FR-treated seeds. In contrast, elongation of axes from FR-treated seeds was stimulated by gibberellic acid (GA3, but elongation of axes from R-treated ones was not affected by this hormone. This latter result indicates that gibberellins may be involved in the phytochrome-mediated growth responses in lettuce axes.When the root caps of the embryos were removed prior to light treatment, R was still able to induce a water-potential decrease in the embryonic axes, indicating that at least a portion of the active Pfr resides in the axis and not the root cap.Abbreviations ABA abscisic acid - FR far red light - GA3 gibberellic acid - PEG polyethylene glycol - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

6.
The inhibitory effects of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on elongation growth of pea (Pisum sativum L.) seedling roots were investigated in relation to the effects of these compounds on ethylene production by the root tips. When added to the growth solution both compounds caused a progressively increasing inhibition of growth within the concentration range of 0.01 to 1 micromolar. However, only ACC increased ethylene production in root tips excised from the treated seedlings after 24 hours. High auxin concentrations caused a transitory increase of ethylene production during a few hours in the beginning of the treatment period, but even in 1 micromolar IAA this increase was too low to have any appreciable effect on growth. ACC, but not IAA, caused growth curvatures, typical of ethylene treatment, in the root tips. IAA caused conspicuous swelling of the root tips while ACC did not. Cobalt and silver ions reversed the growth inhibitory effects induced by ACC but did not counteract the inhibition of elongation or swelling caused by IAA. The growth effects caused by the ACC treatments were obviously due to ethylene production. We found no evidence to indicate that the growth inhibition or swelling caused by IAA is mediated by ethylene. It is concluded that the inhibitory action of IAA on root growth is caused by this auxin per se.  相似文献   

7.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

8.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

9.
Lanthanum ions antagonize calcium and are used as a Ca2+ channel blocker but their direct effects are unknown. We investigated lanthanum effects on endogenous abscisic acid (ABA) levels in protoplasts and intact primary roots of Zea mays L. Application of 1 mM La3+ reduced primary root elongation, caused swelling of root tips, and essentially doubled the ABA content in intact roots but decreased ABA in root protoplasts in a concentration-dependent manner. Osmotic stress increased ABA level in protoplasts more than in intact roots. Temporal ABA changes in response to La3+ treatment indicate that La3+ affects root growth at least partially via ABA pathway.  相似文献   

10.
Four maize cultivars, which differ in tolerance to acid soils under field conditions ( Zea mays L., acid soil-tolerant C 525 M, BR 201 F and Adour 250, and acid soil-sensitive HS 7777) were used to study the influence of pH (4.3 and 6.0) and Al (0, 20 and 50 μ M ) on the elongation of seminal roots in nutrient solution. Root elongation was inhibited by high H+ concentrations (pH 4.3) in cultivars C 525 M, Adour 250 and HS 7777 but not in BR 201 F. After 20 h exposure to Al, root elongation rates were more inhibited in cultivars BR 201 F and HS 7777 than in C 525 M and Adour 250. The use of a computerized linear displacement transducer system with high resolution (1 μm) allowed the monitoring of short-term responses of root elongation to Al. In the three cultivars affected by H+ toxicity, but not in the acid-tolerant BR 201 F, Al supply caused an immediate, but transient increase of relative root elongation rates. This result supports the hypothesis that Al-induced growth stimulation is caused by amelioration of proton toxicity. The time required for 20 μ M Al to induce a 5% decrease of root elongation rates was shorter in the Al-sensitive BR 201 F (33 min) and HS 7777 (86 min) than in the Al-tolerant C 525 M (112 min) and Adour 250 (146 min) cultivars. However, the response-time to Al may be overestimated in the proton-sensitive cultivars, due to the transient stimulation of root elongation rates induced by Al. According to our results, experiments intended to investigate primary mechanisms of Al toxicity should be started after less than 30 min exposure to toxic Al concentrations, using pH conditions which avoid Al-induced growth stimulation due to amelioration of proton toxicity.  相似文献   

11.
12.
Horst  W.J.  Püschel  A.-K.  Schmohl  N. 《Plant and Soil》1997,192(1):23-30
The screening of 37 Zea mays L. cultivars in nutrient solution using root elongation (24 h) as a parameter showed large genotypic differences in Al resistance among the genetic material evaluated.Callose concentrations in root tips were closely and positively related to Al-induced inhibition of root elongation. Therefore, Al-induced callose formation in root tips appears to be an excellent indicator of Al injury and can be used as a selection criteria for Al sensitivity. In contrast, aluminium concentrations in root tips were not related to Al-induced inhibition of root elongation, nor to Al-induced callose formation. Callose formation was also induced by short-term A1 treatment in root tip protoplasts, and the response of protoplasts clearly reflected the cultivar-specific response to Al of intact roots. This indicates that in maize, Al sensitivity is expressed on the protoplast level.  相似文献   

13.
The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, inducing a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.  相似文献   

14.
Root and Shoot Growth of Plants Treated with Abscisic Acid   总被引:4,自引:0,他引:4  
Young seedlings of Capsicum annum L., Commelina communis L.and maize (Zea mays L.) were subjected to a mild water-stressingtreatment and/or treated with abscisic acid (ABA). Plants rootedin soil received a soil-drying treatment and their leaves weresprayed with a 10–4 M solution of ABA. Plants grown insolution culture were stressed by the addition of polyethyleneglycol (PEG) to the rooting medium and ABA was also added tothe rooting medium, either with or without PEG. The effectsof both treatments on the growth of roots and shoots and theultimate root: shoot dry weight ratio were very similar. Shootgrowth was limited both by water stress and by ABA application;while there was some evidence that mild water stress and/orABA application may have resulted in a stimulation of root growth.More severe water stress reduced the growth of roots but theoverall effect of stress was to increase the ratio of rootsto shoots. Capsicum annum L., Commelina communis L., Zea mays L., water stress, abscisic acid  相似文献   

15.
L. Rivier  H. Milon  P.-E. Pilet 《Planta》1977,134(1):23-27
Quantitative analyses of abscisic acid (ABA) in different parts of maize root tips (Zea mays L. cv. Kelvedon 33) were performed by mass fragmentography using the hexadeuterated analog of ABA as internal standard. It was found that the cap and the apex contained 36.1 g and 66.5 g ABA kg–1 fresh weight, respectively. The possibility that the growth regulator formed in the cap and inhibiting the elongation of the extending zone of the root is ABA is discussed.Abbreviations ABA abscisic acid - ABA-D6 hexadeuterated ABA - ABA-Me and ABA-D6-Me methyl esters of ABA and ABA-D6, respectively - GC-MS gas chromatograph(y)-mass spectrometry/spectrometer - IAA indol-3-yl-acetic acid - MF mass fragmentography - TMS trimethylsilyl  相似文献   

16.
Primary roots of intact maize plants (Zea mays L.) grown for several days in nutrient solutions containing 100 mol m−3 NaCl and additional calcium, had relatively inhibited rates of elongation. Possible physical restraints underlying this salt induced inhibition were investigated. The inhibition did not involve reductions in osmotic potential gradients and turgor in the tip tissues responsible for root elongation growth. The apparent yield threshold pressure, which is related to capacity of cell walls to undergo loosening by stress relaxation, was estimated psychrometrically in excised root tips. Salinity increased yield threshold values. Comparative root extensibility values were obtained for intact plants by determining the initial (1 min) increase in root elongation rate induced by an 0.1 MPa osmotic jump. Comparative extensibility was significantly reduced in the salinized root tips. Salinity did not reduce capacities for water efflux and associated elastic contraction in root tip tissues of intact plants exposed to hypertonic mannitol. We conclude that cell wall hardening in the elongating root tips is an important component of root growth inhibition induced by long-term salinization.  相似文献   

17.
Petiole pithiness in celery, Apium graveolens L., was found to be stimulated by several types of root stress. Flooding of the root zone as well as nutrition deficiency required a prolonged period (25–30 days), but water deprivation had a rapid (2–3 days) effect on pithiness development. Pithiness development induced by water deprivation is not reversible upon rehydration of whole plants but is reversible upon rehydration of affected petiole slices. The stimulation of water stress-related pithiness was found to be associated with an increased level of endogenous free abscisic acid (ABA). Exogenously applied ABA stimulated petiole pithiness of detached leaves in a concentration-dependent fashion. It is suggested that in celery, ABA is an agent which mediates stimulation of petiole pithiness by water stress.  相似文献   

18.
Pilet PE 《Plant physiology》1981,67(5):1047-1050
Apical segments of roots of Zea mays L. cv. Orla and cv. Anjou show a strong georeaction during 7 hours geostimulation. This is abolished by detipping the segments and restored by replacing the tips upon the apical cut surfaces. After exodiffusion of endogenous indoleacetic acid (IAA) the retipped segments showed a significantly lower geocurvature. Application of low concentrations of IAA to the basal cut surface of root segments from which endogenous IAA had not been allowed to exodiffuse increased the geocurvature of retipped Orla segments but decreased geocurvature of Anjou segments. At appropriate concentration basally applied IAA restored the georeaction capacity of root segments from which the endogenous auxin had exodiffused. The implications of the interaction between exogenous and endogenous IAA in the control of root georeaction are discussed with special reference to the normal role of endogenous IAA in the regulation of root georeaction and the variation in endogenous IAA content of roots of different cultivars of maize. The probability that the normal control of root growth and georeaction involves concomitant actions in the elongation zone of IAA moving preferentially in the acropetal direction and basipetally transported growth inhibitors (such as abscisic acid) produced in the cap cells is stressed.  相似文献   

19.
Plants of Lemna minor L. were grown in axenic culture in order to investigate the direct effect of abscisic acid (ABA) on individual fronds and roots. Both frond and root growth rates were inhibited by 60%, and total growth of both organs was reduced by 30% with ABA concentrations of 2 mg/l. Abscisic acid inhibited frond reproduction, and treated fronds tended to remain attached to parents. Reduction of root elongation and frond expansion occurred within 1–4 hr. Prolonged exposure to ABA inhibited both cell enlargement and cell division in the roots. The results are discussed in the light of current views on the control of growth with endogenous levels of promoter and inhibitor hormones.  相似文献   

20.
A simple bioassay based on the inhibition by abscisic acid (ABA) of cucumber (Cucumis sativus L., cv. National Pickling) hypocotyl elongation was developed. Sections of 3-day-old dark-grown cucumber hypocotyl taken from 0–5 mm immediately below the cotyledon were used for the assay. A dark incubation period of 20 h was followed by an exposure to light for 24 h. Under these conditions, the inhibition of hypocotyl elongation is proportional to the abscisic acid applied. The minimum detectable level of abscisic acid was 10–9 M, and the range of linear response to abscisic acid was between 10–7 and 10–3 M. This assay is 10 times more sensitive than the cucumber cotyledon greening bioassay for abscisic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号