首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerium oxide nanoparticles have been shown to sensitize cancer cells to radiation damage. Their unique redox properties confer excellent therapeutic potential by augmenting radiation dose with reactive oxygen species mediating bystander effects. Owing to its metallic properties, cerium oxide nanoparticles can be visualized inside cells using reflected light and optical sectioning. This can be advantageous in settings requiring none or minimal sample preparation and modification. We investigated the use of reflectance imaging for the detection of unmodified nanoceria in MDA MB231 breast cancer cells along with differential interference contrast imaging and fluorescent nuclear labeling. We also performed studies to evaluate the uptake capability, cellular toxicity and redox properties of nanocaria in these cells. Our results demonstrate that reflectance structured illumination imaging can effectively localize cerium oxide nanoparticles in breast cancer cells, and when combining with differential interference contrast and fluorescent cell label imaging, effective compartmental localization of the nanoparticles can be achieved. The total number of cells taking up the nanoparticles and the amount of nanoparticle uptake increased significantly in proportion to the dose, with no adverse effects on cell survival. Moreover, significant reduction in reactive oxygen species was also observed in proportion to increasing nanoceria concentrations attesting to its ability to modulate oxidative stress. In conclusion, this work serves as a pre-clinical scientific evaluation of the effective use of reflectance structured illumination imaging of cerium oxide nanoparticles in breast cancer cells and the safe use of these nanoparticles in MDA MB231 cells for further therapeutic applications.  相似文献   

2.
Magnetic iron oxide (IO) nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI), which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.  相似文献   

3.
Low-cost, robust, and user-friendly diagnostic capabilities at the point-of-care (POC) are critical for treating infectious diseases and preventing their spread in developing countries. Recent advances in micro- and nanoscale technologies have enabled the merger of optical and fluidic technologies (optofluidics) paving the way for cost-effective lensless imaging and diagnosis for POC testing in resource-limited settings. Applications of the emerging lensless imaging technologies include detecting and counting cells of interest, which allows rapid and affordable diagnostic decisions. This review presents the advances in lensless imaging and diagnostic systems, and their potential clinical applications in developing countries. The emerging technologies are reviewed from a POC perspective considering cost effectiveness, portability, sensitivity, throughput and ease of use for resource-limited settings.  相似文献   

4.
Gold nanoparticles (AuNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. AuNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, AuNPs might be used as contrast agents in echographic imaging. In this work, we have developed a AuNPs -based system for the in vitro molecular imaging of ovarian carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent AuNPs nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized AuNPs were characterized. Then, the binding and uptake of both naked and functionalized AuNPs were analyzed by laser scanning confocal microscopy in human HeLa cells (ovarian carcinoma) cell line. The results obtained showed that GPC-3-functionalized fluorescent AuNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HeLa cells without affecting their viability.  相似文献   

5.
Jiang W  Xie H  Ghoorah D  Shang Y  Shi H  Liu F  Yang X  Xu H 《PloS one》2012,7(5):e37376
Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs), for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.  相似文献   

6.
The polymeric functionalization of superparamagnetic iron oxides nanoparticles is developed for cancer targeting capability and magnetic resonance imaging. Here the nanoparticles (NP) are decorated through the adsorption of a polymeric layer around the particle surface for the formation of core-shell. The synthesized magnetic nanoparticles (MNPs) are conjugated with fluorescent dye, targeting ligand, and drug molecules for improvement of target specific diagnostic and possible therapeutics applications. In this investigation doxorubicin was loaded into the shell of the MNPs and release study was carried out at different pH. The core-shell structure of magnetic NP coated chitosan matrix was visualized by TEM observation. The cytotoxicity of these magnetic NPs is investigated using MTT assay and receptor mediated internalization by HeLa and NIH3T3 cells are studied by fluorescence microscopy. Moreover, compared with T2-weighted magnetic resonance imaging (MRI) in the above cells, the synthesized nanoparticles are showed stronger contrast enhancements towards cancer cells.  相似文献   

7.
Targeted metallic nanoparticles have shown promise as contrast agents for molecular imaging. To obtain molecular specificity, the nanoparticle surface must be appropriately functionalized with probe molecules that will bind to biomarkers of interest. The aim of this study was to develop and characterize a flexible approach to generate molecular imaging agents based on gold nanoparticles conjugated to a diverse range of probe molecules. We present two complementary oligonucleotide-based approaches to develop gold nanoparticle contrast agents which can be functionalized with a variety of biomolecules ranging from small molecules, to peptides, to antibodies. The size, biocompatibility, and protein concentration per nanoparticle are characterized for the two oligonucleotide-based approaches; the results are compared to contrast agents prepared using adsorption of proteins on gold nanoparticles by electrostatic interaction. Contrast agents prepared from oligonucleotide-functionalized nanoparticles are significantly smaller in size and more stable than contrast agents prepared by adsorption of proteins on gold nanoparticles. We demonstrate the flexibility of the oligonucleotide-based approach by preparing contrast agents conjugated to folate, EGF peptide, and anti-EGFR antibodies. Reflectance images of cancer cell lines labeled with functionalized contrast agents show significantly increased image contrast which is specific for the target biomarker. To demonstrate the modularity of this new bioconjugation approach, we use it to conjugate both fluorophore and anti-EGFR antibodies to metal nanoparticles, yielding a contrast agent which can be probed with multiple imaging modalities. This novel bioconjugation approach can be used to prepare contrast agents targeted with biomolecules that span a diverse range of sizes; at the same time, the bioconjugation method can be adapted to develop multimodal contrast agents for molecular imaging without changing the coating design or material.  相似文献   

8.
Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.  相似文献   

9.
Modularly assembled targeting nanoparticles were synthesized through self-assembly of targeting moieties on surfaces of functional nanoparticles. Specific molecular recognition of nickel nitrilotriacetate on Fe3O4 nanoparticles with hexahistidine tag on RGD4C peptides results in precisely controlled orientation of the targeting peptides. Better selectivity of the self-assembled RGD4C-Fe3O4 nanoparticles targeting oral cancer cells than that achievable through a conventional chemical cross-link strategy was demonstrated by means of atomic absorption spectrometry (AAS). An oral cancer hamster model was applied to reveal specific in vivo targeting and MR molecular imaging contrast in cancer lesions expressing alphavbeta3 integrin. Both AAS and MRI revealed that the self-assembled nanoparticles improved the targeting efficiency and reduced the hepatic uptake as compared with the conventional chemical cross-link particles. We investigated the biosafety, biodistribution, and kinetics of the nanoparticles and found that the nanoparticles were significantly cleared from the liver and kidneys after one week. By recombining the desired targeting moiety and various functional nanoparticles through self-assembly, this new modularly designed platform has the capability of enhancing the efficiency of targeted diagnosis and therapies for a wide spectrum of biomedical applications.  相似文献   

10.
In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.  相似文献   

11.
Targeted delivery of cells and therapeutic agents would benefit a wide range of biomedical applications by concentrating the therapeutic effect at the target site while minimizing deleterious effects to off-target sites. Magnetic cell targeting is an efficient, safe, and straightforward delivery technique. Superparamagnetic iron oxide nanoparticles (SPION) are biodegradable, biocompatible, and can be endocytosed into cells to render them responsive to magnetic fields. The synthesis process involves creating magnetite (Fe3O4) nanoparticles followed by high-speed emulsification to form a poly(lactic-co-glycolic acid) (PLGA) coating. The PLGA-magnetite SPIONs are approximately 120 nm in diameter including the approximately 10 nm diameter magnetite core. When placed in culture medium, SPIONs are naturally endocytosed by cells and stored as small clusters within cytoplasmic endosomes. These particles impart sufficient magnetic mass to the cells to allow for targeting within magnetic fields. Numerous cell sorting and targeting applications are enabled by rendering various cell types responsive to magnetic fields. SPIONs have a variety of other biomedical applications as well including use as a medical imaging contrast agent, targeted drug or gene delivery, diagnostic assays, and generation of local hyperthermia for tumor therapy or tissue soldering.  相似文献   

12.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   

13.
Prostate-specific membrane antigen (PSMA) is a notable biomarker for diagnostic and therapeutic applications in prostate cancer. Gold nanoparticles (AuNPs) provide an attractive nanomaterial platform for combining a variety of targeting, imaging, and cytotoxic agents into a unified device for biomedical research. In this study, we present the generation and evaluation of the first AuNP system functionalized with a small molecule phosphoramidate peptidomimetic inhibitor for the targeted delivery to PSMA-expressing prostate cancer cells. The general approach involved the conjugation of streptavidin-coated AuNPs with a biotin-linked PSMA inhibitor (CTT54) to generate PSMA-targeted AuNPs. In vitro evaluations of these targeted AuNPs were conducted to determine PSMA-mediated and time-dependent binding to PSMA-positive LNCaP cells. The PSMA-targeted AuNPs exhibited significantly higher and selective binding to LNCaP cells compared to control non-targeted AuNPs, thus demonstrating the feasibility of this approach.  相似文献   

14.
In this review, we highlight our recent achievements in using colloidal gold nanoparticles as building blocks for fabrication of anisotropic and multicomponent nanoparticles (e.g., nanoshells, semiconductor nanocrystals, and gold nanorods). The tunable optical properties of these nanoparticles are well suited for various biomedical and biophotonic applications.  相似文献   

15.
Consisting of a silica core surrounded by a thin gold shell, nanoshells possess an optical tunability that spans the visible to the near infrared (NIR) region, a region where light penetrates tissues deeply. Conjugated with tumor-specific antibodies, NIR-absorbing immunonanoshells can preferentially bind to tumor cells. NIR light then heats the bound nanoshells, thus destroying the targeted cells. Antibodies can be consistently bound to the nanoshells via a bifunctional polyethylene glycol (PEG) linker at a density of approximately 150 antibodies per nanoshell. In vitro studies have confirmed the ability to selectively induce cell death with the photothermal interaction of immunonanoshells and NIR light. Prior to incubation with anti-human epidermal growth factor receptor (HER2) immunonanoshells, HER2-expressing SK-BR-3 breast carcinoma cells were seeded alone or adjacent to human dermal fibroblasts (HDFs). Anti-HER2 immunonanoshells bound to HER2-expressing cells resulted in the death of SK-BR-3 cells after NIR exposure only within the irradiated area, while HDFs remained viable after similar treatment since the immunonanoshells did not bind to these cells at high levels. Control nanoshells, conjugated with nonspecific anti-IgG or PEG, did not bind to either cell type, and cells continued to be viable after treatment with these control nanoshells and NIR irradiation.  相似文献   

16.
Molecular magnetic resonance imaging (MRI) offers the potential to image some events at the cellular and subcellular level and many significant advances have recently been witnessed in this field. The introduction of targeted MR contrast agents has enabled the imaging of sparsely expressed biological targets in vivo. Furthermore, high-throughput screens of nanoparticle libraries have identified nanoparticles that act as novel contrast agents and which can be targeted with enhanced diagnostic specificity and range. Another class of magnetic nanoparticles have also been designed to image dynamic events; these act as 'switches' and could be used in vitro, and potentially in vivo, as biosensors. Other specialized MR probes have been developed to image enzyme activity in vivo. Lastly, the use of chemical exchange and off-resonance techniques have been developed, adding another dimension to the broad capabilities of molecular MRI and offering the potential of multispectral imaging. These and other advances in molecular MRI offer great promise for the future and have significant potential for clinical translation.  相似文献   

17.
The overall goal of this study was to evaluate optical molecular imaging approaches to determine the drug response of chemotherapy and molecular targeted agents in drug sensitive and drug resistant cell lines. The optical molecular imaging approaches selected in this study were based on changes in intracellular uptake and retention of choline and glucose molecules. The breast cancer cell lines were treated with a molecular targeted anti-EGFR therapy. The bladder cancer cell lines were treated with a conventional chemotherapy approach. Sensitivity of optical molecular imaging approach was also compared with conventional cell viability and cell growth inhibition assays. Results demonstrate that optical molecular imaging of changes in intracellular uptake of metabolites was effective in detecting drug susceptibility for both molecular targeted therapy in breast cancer cells and chemotherapy in bladder cancer cells. Between the selected metabolites for optical molecular imaging, changes in glucose metabolic activity showed higher sensitivity in discrimination between the drug sensitive and drug resistant cell lines. The results demonstrated that optical molecular imaging approaches more significantly sensitive as compared to the conventional cell viability and growth assays. Overall, the results demonstrate potential of optical molecular imaging of metabolic activity to improve sensitivity of in-vitro drug response assays.  相似文献   

18.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

19.
Therapeutic and diagnostic methods based on photomechanical effects are attracting much current attention in contexts as oncology, cardiology and vascular surgery, for such applications as photoacoustic imaging or microsurgery. Their underlying mechanism is the generation of ultrasound or cavitation from the interaction of short optical pulses with endogenous dyes or targeted contrast agents. Among the latter, gold nanorods are outstanding candidates, but their use has mainly been reported for photoacoustic imaging and photothermal treatments. Conversely, much less is still known about their value as a precision tool for photomechanical manipulations, such as to impart local damage with high spatial resolution through the expansion and collapse of microbubbles. Here, we address the feasibility of gold nanorods exhibiting a distribution of surface plasmon resonances between about 900 to above 1100 nm as a contrast agent for photoacoustic theranostics. After testing their cytotoxicity and cellular uptake, we discuss their photostability and use to mediate cavitation and the photomechanical destruction of targeted cells. We find that the choice of a plasmonic band peaking around 1064 nm is key to enhance the translational potential of this approach. With respect to the standard alternative of 800 nm, at 1064 nm, relevant regulations on optical exposure are less restrictive and the photonic technology is more mature.   相似文献   

20.
Apoptosis, or programmed cell death, plays an important role in the etiology of a variety of diseases, including cancer and myocardial infarction. Visualization of apoptosis would allow both early detection of therapy efficiency and evaluation of disease progression. To that aim, we synthesized two types of lipid-based bimodal contrast agents that enable the detection of apoptotic cells with both MRI and optical techniques. MR contrast was provided either by entrapment of iron oxide particles within pegylated micelles or by incorporation of Gd-DTPA-bis(stearylamide) (Gd-DTPA-BSA) lipids within the lipid bilayer of pegylated liposomes. The resulting contrast agents were approximately 10 and 100 nm in diameter, respectively. Additional fluorescent lipids were incorporated in the lipid (bi)layer of the contrast agents to allow parallel detection with optical methods. Multiple human recombinant annexin A5 molecules were covalently coupled to introduce specificity for apoptotic cells. Both annexin A5-conjugated contrast agents were shown to significantly increase the relaxation rates of apoptotic cell pellets compared to untreated control cells and apoptotic cells that were treated with nonfunctionalized nanoparticles. Increased relaxation rates were confirmed to originate from association of the contrast agents to apoptotic cells by confocal microscopy. The targeted nanoparticles presented in this study, which differ both in size and in magnetic properties, may have applications for the in vivo detection of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号