首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many marine sponges, hereafter termed high-microbial-abundance (HMA) sponges, harbor large and complex microbial consortia, including bacteria and archaea, within their mesohyl matrices. To investigate vertical microbial transmission as a strategy to maintain these complex associations, an extensive phylogenetic analysis was carried out with the 16S rRNA gene sequences of reproductive (n = 136) and adult (n = 88) material from five different Caribbean species, as well as all published 16S rRNA gene sequences from sponge offspring (n = 116). The overall microbial diversity, including members of at least 13 bacterial phyla and one archaeal phylum, in sponge reproductive stages is high. In total, 28 vertical-transmission clusters, defined as clusters of phylotypes that are found both in adult sponges and their offspring, were identified. They are distributed among at least 10 bacterial phyla and one archaeal phylum, demonstrating that the complex adult microbial community is collectively transmitted through reproductive stages. Indications of host-species specificity and cospeciation were not observed. Mechanistic insights were provided using a combined electron microscopy and fluorescence in situ hybridization analysis, and an indirect mechanism of vertical transmission via nurse cells is proposed for the oviparous sponge Ectyoplasia ferox. Based on these phylogenetic and mechanistic results, we suggest the following symbiont transmission model: entire microbial consortia are vertically transmitted in sponges. While vertical transmission is clearly present, additional environmental transfer between adult individuals of the same and even different species might obscure possible signals of cospeciation. We propose that associations of HMA sponges with highly sponge-specific microbial communities are maintained by this combination of vertical and horizontal symbiont transmission.  相似文献   

2.
Many marine demosponges contain large amounts of phylogenetically complex yet highly sponge-specific microbial consortia within the mesohyl matrix, but little is known about how these microorganisms are acquired by their hosts. Settlement experiments were performed with the viviparous Caribbean demosponge Ircinia felix to investigate the role of larvae in the vertical transmission of the sponge-associated microbial community. Inspections by electron microscopy revealed large amounts of morphologically diverse microorganisms in the center of I. felix larvae, while the outer rim appeared to be devoid of microorganisms. In juveniles, microorganisms were found between densely packed sponge cells. Denaturing gradient gel electrophoresis (DGGE) was performed to compare the bacterial community profiles of adults, larvae, and juvenile sponges. Adults and larvae were highly similar in DGGE band numbers and banding patterns. Larvae released by the same adult individual contained highly similar DGGE banding patterns, whereas larvae released by different adult individuals showed slightly different DGGE banding patterns. Over 200 bands were excised, sequenced, and phylogenetically analyzed. The bacterial diversity of adult I. felix and its larvae was comparably high, while juveniles showed reduced diversity. In total, 13 vertically transmitted sequence clusters, hereafter termed “IF clusters,” that contained sequences from both the adult sponge and offspring (larvae and/or juveniles) were found. The IF clusters belonged to at least four different eubacterial phyla and one possibly novel eubacterial lineage. In summary, it could be shown that in I. felix, vertical transmission of microorganisms through the larvae is an important mechanism for the establishment of the sponge-microbe association.  相似文献   

3.
Observed levels of population genetic diversity are often associated with differences in species dispersal and reproductive strategies. In symbiotic organisms, the genetic diversity level of each biont should also be highly influenced by biont transmission. In this study, we evaluated the influence of the reproductive strategies of cyanolichen species on the current levels of population genetic diversity of bionts. To eliminate any phylogenetic noise, we selected two closely related species within the genus Degelia, which only differ in their reproductive systems. We sampled all known populations of both species in central Spain and genotyped the fungal and cyanobacterial components of lichen samples using DNA sequences as molecular markers. We applied population genetics approaches to evaluate the genetic diversity and population genetic structure of the symbiotic components of both lichen species. Our results indicate that fungal and cyanobiont genetic diversity is highly influenced by the reproductive systems of lichen fungus. We detected higher bionts genetic diversity values in the sexual species Degelia plumbea. By contrast, the levels of fungal and cyanobiont genetic diversity in the asexual species Degelia atlantica were extremely low (almost clonal), and the species shows a high specificity towards its cyanobiont. Our results indicate that reproduction by vegetative propagules, in species of the genus Degelia, favors vertical transmission and clonality, which affects the species’ capacity for resources and competition, thereby limiting the species to restricted niches.  相似文献   

4.
Understanding processes that contribute to population maintenance is critical to the management and conservation of species. Despite this, very little is currently known about the reproductive biology of Great Barrier Reef (GBR) sponge species. Here, we established reproductive parameters including mode of sexuality and development, seasonality, sex ratios, gametogenesis, reproductive output, and size at sexual maturity for the common phototrophic intertidal sponge, Carteriospongia foliascens, in the central GBR over two reproductive cycles. A population sexual productivity index (PoSPi) integrating key reproductive parameters was formulated to compare population larval supply over time. This study shows that C. foliascens is reproductive all year round, gonochoric and viviparous, with larvae developing asynchronously throughout the mesohyl. The influence of environmental parameters relevant to C. foliascens reproduction [i.e., sea surface temperature (SST), photoperiod, and rainfall] was also examined, and SST was found to have the most significant effect on phenology. C. foliascens reproduction exhibited annual mono-cyclic patterns closely resembling SST fluctuations. Reproductive output was depressed at low SST (<23 °C) and increased at temperatures above 23 °C. Peak sperm release occurred at temperatures above 25 °C, while peak larval release occurred during the annual temperature maxima (>28 °C). A twofold increase in maximum larval production (PoSPi) in C. foliascens was observed in the second reproductive cycle, following a depressed PoSPi in the first cycle. This reduction in PoSPi in the first reproductive cycle was associated with elevated SST and rainfall, coinciding with one of the strongest La Niña events on record.  相似文献   

5.
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota’s functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.  相似文献   

6.
A dynamic continuum exists from free-living environmental microbes to strict host-associated symbionts that are vertically inherited. However, knowledge of the forces that drive transitions in symbiotic lifestyle and transmission mode is lacking. Arsenophonus is a diverse clade of bacterial symbionts, comprising reproductive parasites to coevolving obligate mutualists, in which the predominant mode of transmission is vertical. We describe a symbiosis between a member of the genus Arsenophonus and the Western honey bee. The symbiont shares common genomic and predicted metabolic properties with the male-killing symbiont Arsenophonus nasoniae, however we present multiple lines of evidence that the bee Arsenophonus deviates from a heritable model of transmission. Field sampling uncovered spatial and seasonal dynamics in symbiont prevalence, and rapid infection loss events were observed in field colonies and laboratory individuals. Fluorescent in situ hybridisation showed Arsenophonus localised in the gut, and detection was rare in screens of early honey bee life stages. We directly show horizontal transmission of Arsenophonus between bees under varying social conditions. We conclude that honey bees acquire Arsenophonus through a combination of environmental exposure and social contacts. These findings uncover a key link in the Arsenophonus clades trajectory from free-living ancestral life to obligate mutualism, and provide a foundation for studying transitions in symbiotic lifestyle.Subject terms: Microbial ecology, Molecular evolution, Bacterial evolution, Bacterial genetics, Phylogenetics  相似文献   

7.
Wolbachia sp. is a maternally inherited symbiont of the almond moth, Ephestia cautella. It is transmitted through the cytoplasm of the egg and occurs normally in the gonads of all stages of the moth. The symbiont is responsible for reproductive cytoplasmic incompatibility between crosses of experimental laboratory strains of aposymbiotic female moths and symbiotic (normal) males. Although female moths were inseminated in laboratory tests, their eggs failed to hatch and exhibited no signs of embryonic development. The reciprocal cross, i.e., symbiotic female months × aposymbiotic males, produced normal progeny.The ultrastructure of Wolbachia was studied in sections of E. cautella larval testes. Symbionts, minute rod-shaped structures, were abundant in the cytoplasm of hypertrophied spermatids. There was no indication of deleterious influence of symbionts on sperm production or activity. Strains of Wolbachia occur in allopatric populations of insects where they may function as a genetic isolation mechanism. Microorganismal reproductive incompatibility has been suggested as a possible approach for insect control.  相似文献   

8.
The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge–coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).  相似文献   

9.
The costs and benefits of symbiotic interactions may vary with host and symbiont ontogeny. Effects of symbionts at different stages of host development or on different host demographic rates do not contribute equally to fitness. Although rarely applied, a population dynamics approach that integrates over the host life cycle is therefore necessary for capturing the net costs or benefits and, thus, the mutualistic or parasitic nature of symbioses. Using the native, disturbance‐specialist grass Agrostis hyemalis, we asked how a symbiotic endophyte affected the population dynamics of its host and how imperfect vertical transmission influenced symbiont frequency in a late successional environment. A size‐structured integral projection model (IPM) parameterized with experimental field data showed that greater rates of individual growth and reproduction for endophyte‐symbiotic (E+) hosts outweighed their lower rates of survival, leading to a net positive effect of symbiosis on equilibrium plant population growth (slower rate of extinction). Given that populations under going successional transitions are unlikely to be at an equilibrium size structure, we also conducted transient analysis that showed an initial short‐term cost to endophyte symbiosis. We used a megamatrix approach to link E? and E+ IPMs via imperfect vertical transmission and found that this parameter strongly influenced the frequency of symbiosis via complex interactions with host demographic rates. Overall, our population dynamics approach improves the ability to characterize the outcome of symbiotic interactions, and results suggest that particular attention should be paid to interactions between the rate of vertical transmission and host demography.  相似文献   

10.
Selected interactions between the encrusting sponge Halichondria panicea and its primary predator, the dorid nudibranch Archidoris montereyensis, were investigated in a high-latitude rocky intertidal community spatially dominated by H. panicea. Feeding experiments were conducted in which A. montereyensis pairs were provided with sponge containing symbiotic zoochlorellae or sponge in which the zoochlorellae population had been reduced or removed by shading. Nudibranchs consuming H. panicea with symbiotic zoochlorellae had higher feeding, growth, and egg production rates than individuals eating aposymbiotic sponge. We simulated A. montereyensis predation on H. panicea by creating typically sized feeding grooves in the sponge. H. panicea's response was high linear growth rates into the experimental feeding grooves, generally recovering most of the groove area within 4 weeks. Overall, the sponge's rapid response to tissue damage minimizes grazing impacts and substrate loss and reduces susceptibility to wave removal.  相似文献   

11.
Crop weeds develop in highly modified environments and are one of the most severe threats to agriculture worldwide, because their invasive nature determines competition for resources with crops and at the same time they can be hosts for pests and diseases. The information provided in this work is relevant both in scientific and technical terms, contributing to the design of effective strategies for the control of Datura ferox (Solanaceae). The aims of this work were to: (a) evaluate the reproductive strategies of D. ferox relative to fruit and seed production, (b) analyze the relationship between reproductive traits and persistence of these populations in agro-ecosystems of central Argentina, and (c) discuss different strategies to control crop weeds based on the knowledge of their reproductive ecology. D. ferox presented a great reproductive capacity that would not be constrained by limited pollen availability or pollinators in the populations studied. Flowers were pollinated by sphingids, coleopterans and Apis mellifera. The populations were self-compatible and autogamous; however, they exhibited higher fruiting percentages by natural pollination. Fruits produced by autogamy and geitonogamy had larger size and lower seed number and mass than those derived from natural pollination and xenogamy. D. ferox has combinations of traits (i.e., two flowering peaks, interactions with different pollinators, seed production after autogamy or xenogamy) that provide ecological advantages for establishment and survival processes in agro-ecosystems, hindering the species’ control. Control strategies might be improved if D. ferox abundance would be reduced before flowering to avoid fruit and seed production. This management strategy should be consistent over several years because the soil seed bank would allow population recovery in subsequent years.  相似文献   

12.
The psbA gene, which encodes a major photosystem II protein (protein II or D1), is a marker for the presence of phototrophic organisms in water communities. We have pioneered the use of this marker for studying the diversity of phototrophic microflora of freshwater invertebrates. The object of the study is the microbial associations accompanying the endemic Baikal sponge Baikalospongia intermedia and the surrounding aquatic microbial community. Analysis of the psbA gene sequences in the examined microbiomes demonstrates the presence of various phototrophic groups, such as Cyanobacteria, Chlorophyta, Heterokonta, Haptophyta, and Ochrophyta algae, as well as cyanophages. A total of 35 unique psbA gene sequences have been distinguished in the microbial communities of the endemic sponge B. intermedia and 32 unique sequences in the water community surrounding the sponge. These data demonstrate the involvement of sponge symbiotic communities in the accumulation of primary production and carbon cycle in the Lake Baikal ecosystem.  相似文献   

13.
Bacteria of the phylum Verrucomicrobia are ubiquitous in marine environments and can be found as free-living organisms or as symbionts of eukaryotic hosts. Little is known about host-associated Verrucomicrobia in the marine environment. Here we reconstructed two genomes of symbiotic Verrucomicrobia from bacterial metagenomes derived from the Atlanto-Mediterranean sponge Petrosia ficiformis and three genomes from strains that we isolated from offshore seawater of the Eastern Mediterranean Sea. Phylogenomic analysis of these five strains indicated that they are all members of Verrucomicrobia subdivision 4, order Opitutales. We compared these novel sponge-associated and seawater-isolated genomes to closely related Verrucomicrobia. Genomic analysis revealed that Planctomycetes-Verrucomicrobia microcompartment gene clusters are enriched in the genomes of symbiotic Opitutales including sponge symbionts but not in free-living ones. We hypothesize that in sponge symbionts these microcompartments are used for degradation of l -fucose and l -rhamnose, which are components of algal and bacterial cell walls and therefore may be found at high concentrations in the sponge tissue. Furthermore, we observed an enrichment of toxin–antitoxin modules in symbiotic Opitutales. We suggest that, in sponges, verrucomicrobial symbionts utilize these modules as a defence mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting the host.  相似文献   

14.
Sponges harbour complex communities of diverse microorganisms, which have been postulated to form intimate symbiotic relationships with their host. Here we unravel some of these interactions by characterising the functional features of the microbial community of the sponge Cymbastela concentrica through a combined metagenomic and metaproteomic approach. We discover the expression of specific transport functions for typical sponge metabolites (for example, halogenated aromatics, dipeptides), which indicates metabolic interactions between the community and the host. We also uncover the simultaneous performance of aerobic nitrification and anaerobic denitrification, which would aid to remove ammonium secreted by the sponge. Our analysis also highlights the requirement for the microbial community to respond to variable environmental conditions and hence express an array of stress protection proteins. Molecular interactions between symbionts and their host might also be mediated by a set of expressed eukaryotic-like proteins and cell–cell mediators. Finally, some sponge-associated bacteria (for example, a Phyllobacteriaceae phylotype) appear to undergo an evolutionary adaptation process to the sponge environment as evidenced by active mobile genetic elements. Our data clearly show that a combined metaproteogenomic approach can provide novel information on the activities, physiology and interactions of sponge-associated microbial communities.  相似文献   

15.
The Caribbean reef sponge Svenzea zeai was previously found to contain substantial quantities of unicellular photosynthetic and autotrophic microbes in its tissues, but the identities of these symbionts and their method of transfer from adult to progeny are largely unknown. In this study, both a 16S rRNA gene-based fingerprinting technique (denaturing gradient gel electrophoresis [DGGE]) and clone library analysis were applied to compare the bacterial communities associated with adults and embryos of S. zeai to test the hypothesis of vertical transfer across generations. In addition, the same techniques were applied to the bacterial community from the seawater adjacent to adult sponges to test the hypothesis that water column bacteria could be transferred horizontally as sponge symbionts. Results of both DGGE and clone library analysis support the vertical transfer hypothesis in that the bacterial communities associated with sponge adults and embryos were highly similar to each other but completely different from those in the surrounding seawater. Sequencing of prominent DGGE bands and of clones from the libraries revealed that the bacterial communities associated with the sponge, whether adult or embryo, consisted of a large proportion of bacteria in the phyla Chloroflexi and Acidobacteria, while most of the sequences recovered from the community in the adjacent water column belonged to the class Alphaproteobacteria. Altogether, 21 monophyletic sequence clusters, comprising sequences from both sponge adults and embryos but not from the seawater, were identified. More than half of the sponge-derived sequences fell into these clusters. Comparison of sequences recovered in this study with those deposited in GenBank revealed that more than 75% of S. zeai-derived sequences were closely related to sequences derived from other sponge species, but none of the sequences recovered from the seawater column overlapped with those from adults or embryos of S. zeai. In conclusion, there is strong evidence that a dominant proportion of sponge-specific bacteria present in the tissues of S. zeai are maintained through vertical transfer during embryogenesis rather than through acquisition from the environment (horizontal transfer).Besides being the oldest metazoans, sponges are the simplest multicellular animals and possess a low degree of tissue differentiation and coordination (54). Sponges are sessile, filter-feeding organisms that may harbor within their tissues a remarkable array of microorganisms, including bacteria (19, 59, 64), archaea (41), zooxanthellae (22), diatoms (63), and fungi (35). In some cases, microbial consortia can make up to 40 to 60% of the sponge tissue volume (21, 61) and exceed a density of 109 microbial cells per ml of sponge tissue (62), which is several orders of magnitude higher than that found in seawater. Apart from being a source of food (43), bacterial symbionts may participate in the acquisition and transfer of nutrients inside sponges (67, 68), the recycling of insoluble protein (69), the stabilization of the sponge skeleton (44), and the processing of metabolic waste (4, 65). Many antimicrobial compounds have been isolated from sponge bacterial symbionts (24, 47, 53), suggesting the involvement of symbiotic bacteria in sponge chemical defenses. In some cases, bacterial symbionts have been found to be the source of bioactive compounds that were isolated from sponges, which has opened up new research directions in marine natural product chemistry, biotechnology, and pharmaceutical development (18, 23, 40).Based on immunological evidence from the 1980s (66), sponge-bacterium symbioses are thought to have originated in the Precambrian, when bacteria evolved to form a single clade of sponge-specific bacteria that were distinct from isolates found in the surrounding seawater. Since then, many studies have similarly documented a high level of consistency and specificity in sponge-bacterium associations (20, 27, 59). Nevertheless, questions remain about the acquisition and maintenance of symbionts in host sponges. In general, the following two hypotheses have been proposed: (i) a recently metamorphosed sponge selectively retains specific groups of bacteria from the diverse pool of bacteria present in the water column as it begins filter feeding (horizontal transfer) or (ii) specific bacterial strains are transmitted by the maternal sponge to developing embryos and are already present in the metamorphosing sponge (vertical transfer) (58). The first hypothesis requires some recognition of specific microbes by the sponge, perhaps through an innate immune system (36) or other means to distinguish symbiont strains from food bacteria (70).Vertical transfer of bacterial symbionts in sponges was first proposed by Lévi and Porte (29), who demonstrated the presence of bacteria inside the larvae of the sponge Oscarella lobularis. Later, in 1976, Lévi and Lévi (30) studied the transmission of bacteria in the sponge Chondrosia reniformis via sponge oocytes. Since then, vertical transmission of bacterial symbionts via eggs or larvae has been documented for several sponge species, including Tethya citrina (15), Geodia cydonium (50), Stelletta grubii (49), Hippospongia sp. (25), Spongia sp. (25), Halisarca dujardini (10), and Corticium candelabrum (8). However, all of these studies employed transmission and scanning electron microscopy and could only examine the presence of bacteria in maternal sponges, oocytes, or larvae at the morphological level, with no determination of microbial identity. With advances in molecular techniques, Enticknap et al. (9) were the first to report the successful isolation of an alphaproteobacterial symbiont, strain NW001, from both the adult sponge Mycale laxissima and its larvae. They also did a preliminary denaturing gradient gel electrophoresis (DGGE) analysis of the bacterial community in seawater and compared that with the community in the sponge larval sample. However, such a comparison was not extended to the sponge adult, and no solid conclusion can be drawn for the horizontal transfer mechanism of sponge symbionts. More recently, Sharp et al. (52) used fluorescence in situ hybridization (FISH) and clone library techniques to demonstrate the presence of proteobacteria, actinobacteria, and a clade of sponge-associated bacteria in the embryos and mesohyl of the tropical sponge Corticium sp. By clone library and DGGE analyses, Schmitt et al. (48a) identified 28 vertical-transmission clusters in five different Caribbean sponge species and demonstrated that the complex sponge adult microbial community was collectively transmitted through reproductive stages. While these recent studies support the vertical transfer hypothesis, they did not fully address the identities of microbes in the water column surrounding the sponges, which is key to determining whether horizontal transfer may also take place.The Caribbean reef sponge Pseudaxinella zeai was reclassified into a new genus, Svenzea (Demospongiae, Halichondria, Dictyonellidae), in 2002 because it has an unusual skeleton arrangement consisting mainly of short stout styles that are arranged in an isodictyal reticulation (2). It is a viviparous sponge that produces the largest embryos (>1 mm in diameter) and larvae (6 mm long) recorded for the phylum Porifera (45). Svenzea zeai has also been classified as a bacteriosponge because it contains substantial amounts of unicellular photosynthetic and autotrophic microbial symbionts in its tissues (2, 45). Although bacteria were observed in the embryos and larvae of this sponge based on transmission electron microscopy studies (45), neither the direct linkage between the maternal sponge and the propagules nor the identity of the microbial symbionts had been established.In this study, our objective was to examine vertical versus horizontal transfer of bacterial symbionts in Svenzea zeai. This was achieved by comparing the bacterial community profiles of the adults and embryos of the sponge by use of a combination of molecular techniques, including DGGE and clone library analysis. More than one technique was employed to compensate for deficiencies of each technique in revealing bacterial community structure. Additionally, we used the same techniques to examine the bacterial community in the seawater that surrounded the sponge to determine whether horizontal transfer was evident.  相似文献   

16.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

17.
Aerobic heterotrophic and facultative anaerobic bacteria were isolated from all developmental stages of the sugar beet root maggot, Tetanops myopaeformis (von Röder). Two distinct bacterial symbiotic relationships were observed. Serratia liquefaciens and Serratia marcescens were found to be associated with all developmental stages. Bacterial symbiont transmission occurred from one generation to the next. Symbionts were transferred from the male reproductive system to the female reproductive system, where both an internal infiltration of the egg chorion and an external smearing of the eggs occurred during oviposition. Pseudomonas maltophilia was found in association with the larval gut and the inner surface of the puparium. Electron microscopy of the inner puparial surface revealed symbionts within the chitinous wall. In vitro symbiont chitinase production was found, using both nephelometric (turbidimetric) and N-acetylglucosamine assays. A relationship appeared to exist between adult fly emergence and enzymatic chitin degradation of the puparium by the bacterial symbionts.  相似文献   

18.
Sponges are host to extremely diverse bacterial communities, some of which appear to be spatiotemporally stable, though how these consistent associations are assembled and maintained from one sponge generation to the next is not well understood. Here we report that a diverse group of microbes, including both bacteria and archaea, is consistently present in aggregates within embryos of the tropical sponge Corticium sp. The major taxonomic groups represented in bacterial 16S rRNA sequences amplified from the embryos are similar to those previously described in a variety of marine sponges. Three selected bacterial taxa, representing proteobacteria, actinobacteria, and a clade including recently described sponge-associated bacteria, were tested and found to be present in all adult samples tested over a 3-year period and in the embryos throughout development. Specific probes were used in fluorescence in situ hybridization to localize cells of the three types in the embryos and mesohyl. This study confirms the vertical transmission of multiple, phylogenetically diverse microorganisms in a marine sponge, and our findings lay the foundation for future work on exploring vertical transmission of specific, yet diverse, microbial assemblages in marine sponges.  相似文献   

19.
Coralline sponges of the genus Vaceletia are regarded as ‘living fossils’, the only recent members of the so-called ‘sphinctozoan-type’ sponges that contributed to reef-building during the Palaeozoic and Mesozoic eras. Vaceletia species were thought to be extinct until the discovery of Vaceletia crypta in the 1970s. Here, we used molecular methods to provide first insights into the microbial diversity of these coralline sponges. Both denaturing gradient gel electrophoresis (DGGE) analyses of 19 Vaceletia specimens and the analysis of 427 clones from a bacterial 16S rRNA gene clone library of a specimen of V. crypta from the Great Barrier Reef (Australia) revealed high diversity and a complex composition with a relatively uniform phylogenetic distribution. Only a single archaeal 16S rRNA phylotype was recovered. The most abundant bacteria were the Chloroflexi (35 %). Of the microbial community, 58 % consisted of the Gammaproteobacteria, Gemmatimonadetes, Actinobacteria, Nitrospira, Deltaproteobacteria, Deferribacteres and Acidobacteria, with nearly equal representation. Less abundant members of the microbial community belonged to the Alphaproteobacteria (3 %), as well as to the Poribacteria, Betaproteobacteria, Cyanobacteria, Spirochaetes, Bacteroidetes, Deinococcus-Thermus and Archaea (all together 4 %). Of the established 96 OTUs, 88 % were closely related to other sponge-derived sequences and thereof 71 OTUs fell into sponge- or sponge-coral specific clusters, which underscores that the “living fossil” coralline sponge Vaceletia shares features of its microbial community with other sponges. The DGGE cluster analysis indicated distinct microbial communities in the different growth forms (solitary and colonial) of Vaceletia species.  相似文献   

20.
Abnormality and disease in sponges have been widely reported, yet how sponge-associated microbes respond correspondingly remains inconclusive. Here, individuals of the sponge Carteriospongia foliascens under abnormal status were collected from the Rabigh Bay along the Red Sea coast. Microbial communities in both healthy and abnormal sponge tissues and adjacent seawater were compared to check the influences of these abnormalities on sponge-associated microbes. In healthy tissues, we revealed low microbial diversity with less than 100 operational taxonomic units (OTUs) per sample. Cyanobacteria, affiliated mainly with the sponge-specific species “Candidatus Synechococcus spongiarum,” were the dominant bacteria, followed by Bacteroidetes and Proteobacteria. Intraspecies dynamics of microbial communities in healthy tissues were observed among sponge individuals, and potential anoxygenic phototrophic bacteria were found. In comparison with healthy tissues and the adjacent seawater, abnormal tissues showed dramatic increase in microbial diversity and decrease in the abundance of sponge-specific microbial clusters. The dominated cyanobacterial species Candidatus Synechococcus spongiarum decreased and shifted to unspecific cyanobacterial clades. OTUs that showed high similarity to sequences derived from diseased corals, such as Leptolyngbya sp., were found to be abundant in abnormal tissues. Heterotrophic Planctomycetes were also specifically enriched in abnormal tissues. Overall, we revealed the microbial communities of the cyanobacteria-rich sponge, C. foliascens, and their impressive shifts under abnormality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号