首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The content of the simple indole alkaloid gramine in barley leaves decreased with age. Conversely, susceptibility to aphids increased in older plants. Population growth rate of the greenbug Schizaphis graminum correlated with gramine content of leaves of several barley cultivars. Gramine decreased rate of feeding, survival and reproductive index of aphids feeding on artificial diets at concentrations similar to those found in plant leaves. Thus, it is suggested that gramine plays a role in the resistance of barley seedlings to S. graminum. Benzyl alcohol, a previously reported insect resistance factor from barley, was absent from all barley cultivars analysed.  相似文献   

2.
(14C-Carbinol)benzyl alcohol taken up through the roots of greenbug (Schizaphis graminum) resistant barley is metabolized into a large number of radioactive compounds which have been separated by ion exchange chromatography. Two of these acidic metabolites have been identified as O-benzoyl-l-malic acid and N-benzoylaspartic acid; these identifications were confirmed by synthesis.  相似文献   

3.
The greenbug aphid, Schizaphis graminum (Rondani) was introduced into the United States in the late 1880s, and quickly was established as a pest of wheat, oat, and barley. Sorghum was also a host, but it was not until 1968 that greenbug became a serious pest of it as well. The most effective control method is the planting of resistant varieties; however, the occurrence of greenbug biotypes has hampered the development and use of plant resistance as a management technique. Until the 1990s, the evolutionary status of greenbug biotypes was obscure. Four mtDNA cytochrome oxidase subunit I (COI) haplotypes were previously identified, suggesting that S. graminum sensu lato was comprised of host-adapted races. To elucidate the current evolutionary and taxonomic status of the greenbug and its biotypes, two nuclear genes and introns were sequenced; cytochrome c (CytC) and elongation factor 1-α (EF1-α). Phylogenetic analysis of CytC sequences were in complete agreement with COI sequences and demonstrated three distinct evolutionary lineages in S. graminum. EF1-α DNA sequences were in partial agreement with COI and CytC sequences, and demonstrated two distinct evolutionary lineages. Host-adapted races in greenbug are sympatric and appear reproductively isolated. Agricultural biotypes in S. graminum likely arose by genetic recombination via meiosis during sexual reproduction within host-races. The 1968 greenbug outbreak on sorghum was the result of the introduction of a host race adapted to sorghum, and not selection by host resistance genes in crops.  相似文献   

4.
Interactions of the parasitoid Lysiphlebus testaceipes (Cresson) and the greenbug, Schizaphis graminum (Rondani), on greenbug-resistant 'Cargill 607E' (antibiosis), 'Cargill 797' (primarily tolerance), and -susceptible 'Golden Harvest 510B' sorghum, Sorghum bicolor (L.) Moench, were tested using three levels of biotype I greenbug infestation. The parasitoid infestation rate was 0.5 female and 1.0 male L. testaceipes per plant. For all three greenbug infestation levels, the parasitoid brought the greenbug under control (i.e., prevented the greenbugs from killing the plants) on both resistant hybrids, but it did not prevent heavy leaf damage at the higher greenbug infestation rates. At the low greenbug infestation rate (50 greenbugs per resistant plant when parasitoids were introduced), greenbugs damaged 5 and 18% of the total leaf area on 'Cargill 797' and 'Cargill 607E', respectively, before greenbugs were eliminated. Leaf damage was higher for the intermediate infestation study (120 greenbugs per plant), 21% and 30% leaf area were damaged on the resistant sorghum hybrids 'Cargill 797' and 'Cargill 607E', respectively. At the high greenbug infestation rate (300 greenbugs per plant), heavy damage occurred: 61% on 'Cargill 607E' and 75% on 'Cargill 797'. The parasitoids did not control greenbugs on the susceptible sorghum hybrid 'Golden Harvest 510B'. L. testaceipes provided comparable control on both greenbug-resistant hybrids. This study supports previous studies indicating that L. testaceipes is effective in controlling greenbugs on sorghum with antibiosis resistance to greenbugs. Furthermore, new information is provided indicating that L. testaceipes is also effective in controlling greenbugs on a greenbug-tolerant hybrid.  相似文献   

5.
《Phytochemistry》1987,26(2):367-369
Water deficit increased susceptibility of barley to the aphid Schizaphis graminum. Proline and glycine-betaine accumulated in the stressed plants. These compounds were incorporated into artificial diets to test their effects on aphids. Survival of S. graminum was not affected by proline and glycine-betaine. In addition, glycine-betaine increased reproduction of the greenbug at concentrations similar to those found in stressed barley plants. When glycine-betaine was added to detached shoots of barley, population growth rate of S. graminum increased in that plant material kept in the betaine solutions. It is suggested that glycine-betaine accumulation may be responsible for the increased susceptibility of water-stressed barley to the greenbug.  相似文献   

6.
Greenbug, Schizaphis graminum (Rondani), represents the most important pest insect of sorghum, Sorghum bicolor (L.) Moench, in the Great Plains of the United States. Biotype E is the most widespread and dominant type not only in sorghum and wheat, Triticum aestivum L., fields, but also on many noncultivated grass species. This study was designed to determine sorghum accession PI 550610 resistance to greenbug biotype E, to map the resistance quantitative trait loci (QTLs) by using an established simple sequence repeat (SSR) linkage map and to identify SSR markers closely linked to the major resistance QTLs. In greenhouse screening tests, seedlings of PI 550610 showed strong resistance to the greenbug at a level similar to resistant accession PI550607. For QTL mapping, one F2 population containing 277 progeny and one population containing 233 F2:3 families derived from Westland A line x PI 550610 were used to genotype 132 polymorphic SSR markers and to phenotype seedling resistance to greenbug feeding. Phenotypic evaluation of sorghum seedling damage at 7, 12, 17, and 21 d postinfestation in the F2:3 families revealed that resistance variation was normally distributed. Single marker analysis indicated 16 SSRs spread over five chromosomes were significant for greenbug resistance. Composite interval and multiple interval mapping procedures indicated that a major QTL resided in the interval of 6.8 cM between SSR markers Xtxp358 and Xtxp289 on SBI-09. The results will be valuable in the development of new greenbug biotype E resistant sorghum cultivars and for the further characterization of major genes by map-based cloning.  相似文献   

7.
Greenbug, Schizaphis graminum (Rondani), is one of the injurious aphids of cereals in various regions of the world. This study has measured the life table parameters of the greenbug on six barley genotypes at 25 ± 2 °C, 55 ± 10% RH and 16:8 L:D in greenhouse. According to the results, significant differences were not observed for aphids’ developmental times among the genotypes. Also, the nymphs underwent no mortality on any of the tested genotypes. The longevity of the aphids was obtained from 23.7 to 35.9 days. The least mean number of offsprings was on Raihan cultivar and the highest on line13 (Legia/CWB117-5-9-5). R0 value was significantly higher on line 20 (Mall-4-3094-2//Alpha/Cum/3/Victoria/ICB01-1368-0AP) and line 13 than on the Raihan cultivar. However, the rm and λ values were significantly higher on line 44 (Sls/Bda//Sararood-1) than on Raihan cultivar. T (mean generation time) and DT (doubling time) values of the Raihan cultivar were longer than the other genotypes. Results of this research indicated that among the tested genotypes, the Raihan cultivar is the most unsuitable host for greenbug aphid and lead to the decrease of greenbug population growth.  相似文献   

8.
Interactions between biotype E greenbugs, Schizaphis graminum (Rodani), and two near isogenic lines of the greenbug resistance gene Gb3 of wheat, Triticum aestivum L., were examined for 62 d after infestation. By comparing aphid performance and host responses on control and greenbug-preconditioned plants, we demonstrated that systemic resistance to greenbug herbivory was inducible in the resistant genotype with varying intensities and effectiveness in different parts of the plants. Preconditioning of susceptible plants resulted in modification of within-plant aphid distribution and reduction of cumulative greenbug densities, but it showed no effect on reducing greenbug feeding damage to host plant. Preconditioning of resistant plants altered greenbug population dynamics by reducing the size and buffering the fluctuation of the aphid population. Preconditioning in the first (oldest) leaf of the resistant plant had no phenotypically detectable effect in the stem and induced susceptibility locally in the first leaf within the first 2 d after infestation. The preconditioning-induced resistance reduced greenbug density, delayed aphid density peaks and extended the life of younger leaves in resistant plants. Expression of induced resistance was spatially and temporally dynamic within the plant, which occurred more rapidly, was longer in duration, and stronger in intensity in younger leaves. Host resistance gene-mediated induced resistance was effective in lowering greenbug performance and reducing damage from greenbug herbivory in host plants. Results from this study supported the optimal defense theory regarding within-plant defense allocation.  相似文献   

9.
Categories of resistance to greenbug, Schizaphisgraminum (Rondani), biotype I, were determined in goatgrass, Aegilops tauschii (Coss.) Schmal., accession 1675 (resistant donor parent), 'Wichita' wheat, Triticum aestivum L., (susceptible parent), and an Ae. tauschii-derived resistant line, '97-85-3'. Antibiosis was assessed using the intrinsic rate of increase (rm) of greenbugs confined to each of the three genotypes. Neither parent nor the resistant progeny expressed antibiosis. Mean rm values for greenbug I on Wichita (0.0956), and Ae. tauschii (0.10543) were not significantly different. Mean rm values for Wichita and 97-85-3 were also not significantly different. Antixenosis was determined by allowing aphids a choice to feed on plants of each of the three genotypes. Ae. tauschii 1675 exhibited antixenosis, but this resistance was not inherited and expressed in '97-85-3'. In experiments comparing Wichita and Ae. tauschii 1675, greenbug I population distributions were not significantly different on Wichita at 24 h, but were shifted toward Wichita at 48 h. In the second antixenosis experiment, there were no significant differences in greenbug I population distributions on 97-85-3 or Wichita at 24 or 48 h. When all three lines were compared, there were no significant differences in greenbug biotype I populations at 24 or 48 h after infestation. Comparisons of proportional dry plant weight loss (DWT) and SPAD meter readings were used to determine tolerance to greenbug I feeding. Ae. tauschii 1675 and 97-85-3 were highly tolerant compared with Wichita. Infested and uninfested Ae. tauschii 1675 DWT was nonsignificant, and infested Wichita plants weighed significantly less than uninfested plants. When Wichita and 97-85-3 were contrasted, DWT of infested and uninfested Wichita plants were significantly different, but those of 97-85-3 were not. Mean percent leaf chlorophyll losses for the three genotypes, as measured by the SPAD chlorophyll meter, were as follows: Wichita = 65%; Ae. tauschii 1675 = 25%; and 97-85-3 = 39%. Percent leaf chlorophyll losses caused by greenbug feeding was significantly different in comparisons between Wichita and Ae. tauschii 1675, and comparisons between Wichita and 97-85-3, although feeding damage was not significantly different in comparisons between Ae. tauschii 1675 and 97-85-3. These data provided further evidence of the expression of tolerance to greenbug feeding in Ae. tauschii 1675 and 97-85-3.  相似文献   

10.
Chromosomal regions of sorghum, Sorghum bicolor (L.) Moench, conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes C, E, I, and K from four resistance sources were evaluated by restriction fragment-length polymorphism (RFLP) analysis. At least nine loci, dispersed on eight linkage groups, were implicated in affecting sorghum resistance to greenbug. The nine loci were named according to the genus of the host plant (Sorghum) and greenbug (Schizaphis graminum). Most resistance loci were additive or incompletely dominant. Several digenic interactions were identified, and in each case, these nonadditive interactions accounted for a greater portion of the resistance phenotype than did independently acting loci. One locus in three of the four sorghum crosses appeared responsible for a large portion of resistance to greenbug biotypes C and E. None of the loci identified were effective against all biotypes studied. Correspondingly, the RFLP results indicated resistance from disparate sorghums may be a consequence of allelic variation at particular loci. To prove this, it will be necessary to fine map and clone genes for resistance to greenbug from various sorghum sources.  相似文献   

11.
Abstract 1 The greenbug Schizaphis graminum (Rondani) is a serious pest of Sorghum bicolor L. and small grains in the Southern Plains of the U.S.A. Use of resistant cultivars, the major greenbug management strategy, has been challenged by the rapid development of new greenbug biotypes that overcome plant resistance. 2 We used a high‐throughput amplified fragment length polymorphism (AFLP) fingerprinting method to examine genetic divergence among eight greenbug biotypes (B, C, E, G, I and K, New York and South Carolina). Clustering analysis based on 1775 scored AFLP markers clearly showed that biotypes (C, E, I and K), which are able to infest sorghum fields, share more common polymorphisms among themselves than with other biotypes. 3 This result suggests that common genetic factors exist among these biotypes, enabling them to predominate and thrive in monoculture crops. Our study demonstrated the sensitivity of AFLP in obtaining large quantities of biotype‐associated polymorphic information across the entire greenbug genome.  相似文献   

12.
Biotypic diversity of the greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), was assessed among populations collected from cultivated wheat, Triticum aestivum L., and sorghum, Sorghum bicolor (L.) Moench, and their associated noncultivated grass hosts. Greenbugs were collected during May through August 2002 from 30 counties of Kansas, Nebraska, Oklahoma, and Texas. Discounting the presumptive biotype A, five of the remaining nine letter-designated greenbug biotypes were collected; however, biotypes C, F, J, and K were not detected. Biotypes E and I exhibited the greatest host range and were the only biotypes collected in all four states. Sixteen greenbug clones, collected from eight plant species, exhibited unique biotype profiles. Eleven were collected from noncultivated grasses, three from wheat, and two from sorghum. The most virulent biotypes were collected from noncultivated hosts. The great degree of biotypic diversity among noncultivated grasses supports the contention that the greenbug species complex is composed of host-adapted races that diverged on grass species independently of, and well before, the advent of modern agriculture.  相似文献   

13.
Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.  相似文献   

14.
Genetic linkage maps are fundamental for the localization of genes conferring tolerance to greenbug, Schizaphis graminum (Rondani), feeding damage in sorghum, Sorghum bicolor (L.) Moench. Thirteen linkage groups (LGs) containing 60 simple sequence repeat (SSR) loci were mapped by using a set of sorghum recombinant inbred lines (RILs) obtained from the cross '96-4121' (greenbug-tolerant parent) x Redlan (greenbug-susceptible parent). The LG spanned a distance of 603.5 cM, with the number of loci per LG varying from 2 to 14. Seventeen additional SSR loci were unlinked at a log of odds value of 3.0. Based on chlorophyll loss occurring after greenbug feeding, visual damage ratings, and soil plant analysis development (SPAD), chlorophyll-loss indices were recorded for each RIL and for the parents used in the cross. Composite-interval mapping identified three quantitative trait loci (QTLs) associated with biotype I and five QTLs associated with biotype K. The amount of phenotypic variation explained by these QTLs ranged from 9 to 19.6%. The identification of QTLs that influence greenbug tolerance will not only facilitate the use of marker-assisted selection in sorghum breeding programs but also will provide a solid foundation for detailed characterization of individual loci implicated in greenbug tolerance in sorghum.  相似文献   

15.
Functional responses by Lysiphlebus testaceipes (Cresson), a common parasitoid of small grain aphids, on greenbug, Schizaphis graminum (Rondani), were measured at seven temperatures (14, 12, 10, 8, 6, 4, and 2 degrees C) during a 24-h period (12-h light: 12-h dark). Oviposition by L. testaceipes ceased at temperatures <4 degrees C. At all experimental temperatures, a type I, rather than a type II or type III, functional response was determined to be the best fit based on coefficient of determination (r2) values. L. testaceipes was observed to oviposit in greenbugs at temperatures below the developmental temperature of both the greenbug host (5.8 degrees C) and the parasitoid itself (6.6 degrees C). This ability to oviposit at subdevelopmental temperatures enables the parasitoid to increase the percentage of greenbugs that are parasitized while the greenbugs are unable to reproduce. The implications of these findings regarding population suppression of greenbugs are discussed.  相似文献   

16.
17.
The wheat lines (cultivars) 'Largo', 'TAM110', 'KS89WGRC4', and 'KSU97-85-3' conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes E, I, and K were evaluated to determine the categories of resistance in each line to greenbug biotype K. Our results indicated that Largo, TAM110, KS89WGRC4, and KSU97-85-3 expressed both antibiosis and tolerance to biotype K. Largo, KS89WGRC4, and KSU97-85-3, which express antixenosis to biotype I, did not demonstrate antixenosis to biotype K. The results indicate that the same wheat lines may possess different categories of resistance to different greenbug biotypes. A new cage procedure for measuring greenbug intrinsic rate of increase (r(m)) was developed, by using both drinking straw and petri dish cages, to improve the efficiency and accuracy of r(m)-based antibiosis measurements.  相似文献   

18.
Although spectral remote sensing techniques have been used to study many ecological variables and biotic and abiotic stresses to agricultural crops over decades, the potential use of these techniques for greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae) infestations and damage to wheat, Triticum aestivum L., under field conditions is unknown. Hence, this research was conducted to investigate: 1) the applicability and feasibility of using a portable narrow-banded (hyperspectral) remote sensing instrument to identify and discern differences in spectral reflection patterns (spectral signatures) of winter wheat canopies with and without greenbug damage; and 2) the relationship between miscellaneous spectral vegetation indices and greenbug density in wheat canopies growing in two fields and under greenhouse conditions. Both greenbug and reflectance data were collected from 0.25-, 0.37-, and 1-m2 plots in one of the fields, greenhouse, and the other field, respectively. Regardless of the growth conditions, greenbug-damaged wheat canopies had higher reflectance in the visible range and less in the near infrared regions of the spectrum when compared with undamaged canopies. In addition to percentage of reflectance comparison, a large number of spectral vegetation indices drawn from the literature were calculated and correlated with greenbug density. Linear regression analyses revealed high relationships (R2 ranged from 0.62 to 0.85) between greenbug density and spectral vegetation indices. These results indicate that hyperspectral remotely sensed data with an appropriate pixel size have the potential to portray greenbug density and discriminate its damage to wheat with repeated accuracy and precision.  相似文献   

19.
Recombinant barley high pI alpha-glucosidase was produced by high cell-density fermentation of Pichia pastoris expressing the cloned full-length gene. The gene was amplified from a genomic clone and exons (coding regions) were assembled by overlap PCR. The resulting cDNA was expressed under control of the alcohol oxidase 1 promoter using methanol induction of P. pastoris fermentation in a Biostat B 5 L reactor. Forty-two milligrams alpha-glucosidase was purified from 3.5 L culture in four steps applying an N-terminal hexa-histidine tag. The apparent molecular mass of the recombinant alpha-glucosidase was 100 kDa compared to 92 kDa of the native barley enzyme. The secreted recombinant enzyme was highly stabile during the 5-day fermentation and had significantly superior specific activity of the enzyme purified previously from barley malt. The kinetic parameters Km, Vmax, and kcat were determined to 1.7 mM, 139 nM x s(-1), and 85 s(-1) using maltose as substrate. This work presents the first production of fully active recombinant alpha-glucosidase of glycoside hydrolase family 31 from higher plants.  相似文献   

20.
The Resource Availability Hypothesis (RAH) states that plants with a low Relative Growth Rate (RGR) and high levels of defence against herbivores or pathogens are favoured in habitats with low resource availability, whereas plants with a high potential RGR and low levels of defence are favoured in environments with high resource availability. High levels of defence are expected to result in lower reproduction and/or growth of the herbivores or pathogens. To test this hypothesis, four accessions of each of nine natural Hordeum spontaneum (wild barley) populations were grown in a climate chamber under two levels of nutrient supply. Susceptibility to Schizaphis graminum (greenbug) was quantified by placing a single adult greenbug on each plant and measuring its realised fecundity after 8 days. Data on potential RGR were available from a previous experiment. No support for the RAH was found. The correlation between potential RGR and greenbug reproduction was not significant, neither at the high nor at the low level of nutrient supply. Furthermore, on average plants grown under high and low nutrients did not differ in susceptibility. However, accessions-within-populations differed in the way susceptibility was affected by nutrient supply, and most accessions had a higher susceptibility under nutrient-poor conditions. It could be that these accessions differed in the spectrum of secondary metabolites they produced. Whatever the cause, the genetic variation for the reaction in susceptibility to nutrient supply suggests that selection could act in favour of more or less plasticity in plants without any apparent change in potential RGR.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号