首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

2.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

3.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

4.
Purified chicken liver 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was phosphorylated either from fructose 2,6-bis[2-32P]phosphate or fructose 2-phosphoro[35S]thioate 6-phosphate. The turnover of the thiophosphorylated enzyme intermediate as well as the overall phosphatase reaction was four times faster than with authentic fructose 2,6-bisphosphate. Fructose 2-phosphorothioate 6-phosphate was 10-100-fold less potent than authentic fructose 2,6-bisphosphate in stimulating 6-phosphofructo-1-kinase and pyrophosphate:fructose 6-phosphate phosphotransferase, but about 10 times more potent in inhibiting fructose 1,6-bisphosphatase. The analogue was twice as effective as authentic fructose 2,6-bisphosphate in stimulating pyruvate kinase from trypanosomes.  相似文献   

5.
Bovine brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was purified to homogeneity and characterized. This bifunctional enzyme is a homodimer with a subunit molecular weight of 120,000, which is twice that of all other known bifunctional enzyme isozymes. The kinase/bisphosphatase activity ratio was 3.0. The Km values for fructose 6-phosphate and ATP of the 6-phosphofructo-2-kinase were 27 and 55 microM, respectively. The Km for fructose 2,6-bisphosphate and the Ki for fructose 6-phosphate for the bisphosphatase were 70 and 20 microM, respectively. Physiologic concentrations of citrate had reciprocal effects on the enzyme's activities, i.e. inhibiting the kinase (Ki of 35 microM) and activating the bisphosphatase (Ka of 16 microM). Phosphorylation of the brain enzyme was catalyzed by the cyclic AMP-dependent protein kinase with a stoichiometry of 0.9 mol of phosphate/mol of subunit and at a rate similar to that seen with the liver isozyme. In contrast to the liver isozyme, the kinetic properties of the brain enzyme were unaffected by cyclic AMP-dependent protein kinase phosphorylation, and also was not a substrate for protein kinase C. The brain isozyme formed a labeled phosphoenzyme intermediate and cross-reacted with antibodies raised against the liver isozyme. However, the NH2-terminal amino acid sequence of a peptide generated by cyanogen bromide cleavage of the enzyme had no identity with any known bifunctional enzyme sequences. These results indicate that a novel isozyme, which is related to other 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isozymes, is expressed specifically in neural tissues.  相似文献   

6.
A cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was isolated from a Spinacia oleracea leaf library and used to express a recombinant enzyme in Escherichia coli and Spodoptera frugiperda cells. The insoluble protein expressed in E. coli was purified and used to raise antibodies. Western blot analysis of a protein extract from spinach leaf showed a single band of 90.8 kDa. Soluble protein was purified to homogeneity from S. frugiperda cells infected with recombinant baculovirus harboring the isolated cDNA. The soluble protein had a molecular mass of 320 kDa, estimated by gel filtration chromatography, and a subunit size of 90.8 kDa. The purified protein had activity of both 6-phosphofructo-2-kinase specific activity 10.4-15.9 nmol min(-1) x mg protein (-1) and fructose-2,6-bisphosphatase (specific activity 1.65-1.75 nmol x mol(-1) mg protein(-1). The 6-phosphofructo-2-kinase activity was activated by inorganic phosphate, and inhibited by 3-carbon phosphorylated metabolites and pyrophosphate. In the presence of phosphate, 3-phosphoglycerate was a mixed inhibitor with respect to both fructose 6-phosphate and ATP. Fructose-2,6-bisphosphatase activity was sensitive to product inhibition; inhibition by inorganic phosphate was uncompetitive, whereas inhibition by fructose 6-phosphate was mixed. These kinetic properties support the view that the level of fructose 2,6-bisphosphate in leaves is determined by the relative concentrations of hexose phosphates, three-carbon phosphate esters and inorganic phosphate in the cytosol through reciprocal modulation of 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities of the bifunctional enzyme.  相似文献   

7.
The intragastric administration of ethanol to fed rats caused in their liver, within about 1 h, a 20-fold decrease in the concentration of fructose 2,6-bisphosphate, an activation of fructose 2,6-bisphosphatase, an inactivation of phosphofructo-2-kinase but no change in the concentration of cyclic AMP. Incubation of isolated hepatocytes in the presence of ethanol caused a rapid increase in the concentration of sn-glycerol 3-phosphate and a slower and continuous decrease in the concentration of fructose 2,6-bisphosphate with no change in that of hexose 6-phosphates. There was also a relatively slow activation of fructose 2,6-bisphosphatase and inactivation of phosphofructo-2-kinase. Glycerol and acetaldehyde had effects similar to those of ethanol on the concentration of phosphoric esters in the isolated liver cells. 4-Methylpyrazole cancelled the effect of ethanol but reinforced those of acetaldehyde. High concentrations of glucose or of dihydroxyacetone caused an increase in the concentration of hexose 6-phosphates and counteracted the effect of ethanol to decrease the concentration of fructose 2,6-bisphosphate. As a rule, hexose 6-phosphates had a positive effect and sn-glycerol 3-phosphate had a negative effect on the concentration of fructose 2,6-bisphosphate in the liver, so that, at a given concentration of hexose 6-phosphates, there was an inverse relationship between the concentration of fructose 2,6-bisphosphate and that of sn-glycerol 3-phosphate. These effects could be explained by the ability of sn-glycerol 3-phosphate to inhibit phosphofructo-2-kinase and to counteract the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate. sn-Glycerol 3-phosphate had also the property to accelerate the inactivation of phosphofructo-2-kinase by cyclic AMP-dependent protein kinase whereas fructose 2,6-bisphosphate had the opposite effect. The changes in the activity of phosphofructo-2-kinase and fructose 2,6-bisphosphatase appear therefore to be the result rather than the cause of the decrease in the concentration of fructose 2,6-bisphosphate.  相似文献   

8.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

9.
6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.  相似文献   

10.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

11.
Fructose-2,6-bisphosphatase (EC 3.1.3.46), which hydrolyzes fructose 2,6-bisphosphate to fructose 6-phosphate and Pi, has been purified to apparent homogeneity from spinach leaves and found to be devoid of fructose-6-phosphate,2-kinase activity. The isolated enzyme is a dimer (76 kDa determined by gel filtration) composed of two 33-kDa subunits. The enzyme is highly specific and displays hyperbolic kinetics with its fructose 2,6-bisphosphate substrate (Km = 32 microM). The products of the reaction, fructose 6-phosphate and Pi, along with AMP and Mg2+ are inhibitors of the enzyme. Nonaqueous cell fractionation revealed that, like the fructose 2,6-bisphosphate substrate, fructose-2,6-bisphosphatase as well as fructose-6-phosphate,2-kinase occur in the cytosol of spinach leaves.  相似文献   

12.
6-Phosphofructo-2-kinase was purified from rat liver and hepatoma (HTC) cells. The HTC cell enzyme had kinetic properties different from those of the liver enzyme (more sensitive to inhibition by citrate and not inhibited by sn-glycerol 3-phosphate) and was not a substrate of the cyclic-AMP-dependent protein kinase. Unlike the liver enzyme, which is bifunctional and phosphorylated by fructose 2,6-[2-32P]bisphosphate, the HTC cell enzyme contained no detectable fructose-2,6-bisphosphatase activity and phosphorylation by fructose 2,6-[2-32P]-bisphosphate could not be detected. HTC cell fructose-2,6-bisphosphatase could be separated from 6-phosphofructo-2-kinase activity by purification. Antibodies raised against liver 6-phosphofructo-2-kinase did not precipitate HTC cell fructose-2,6-bisphosphatase whose kinetic properties were completely different from those of the liver enzyme.  相似文献   

13.
N-Bromoacetylethanolamine phosphate and 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate have been tested in order to study the hexose phosphate binding sites of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase. N-Bromoacetylethanolamine phosphate is a competitive inhibitor with respect to fructose-6-P (Ki = 0.24 mM) and a noncompetitive inhibitor with ATP (Ki = 0.8 mM). The reagent inactivates fructose-6-P,2-kinase but not fructose-2,6-bisphosphatase, and the inactivation is prevented by fructose-6-P. The inactivation reaction follows pseudo first-order kinetics to completion and with increasing concentrations of N-bromoacetylethanolamine phosphate a rate saturation effect is observed. The concentration of the reagent giving the half-maximum inactivation is 2.2 mM and the apparent first order rate constant is 0.0046 s-1. The enzyme alkylated by N-bromoacetylethanolamine-P has lost over 90% of the kinase activity, retains nearly full activity of fructose-2,6-bisphosphatase, and its inhibition by fructose-6-P is not altered. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate is also a competitive inhibitor of fructose-6-P,2-kinase with respect to fructose-6-P in the forward reaction and fructose-2,6-P2 in the reverse direction. This reagent inhibits 93% of fructose-6-P,2-kinase but activates fructose-2,6-bisphosphatase 3.7-fold. 3-Bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate alters the fructose-2,6-P2 saturation kinetic curve from negative cooperativity to normal Michaelis-Menten kinetics with K0.5 of 0.8 microM. The reagent, however, has no effect on the fructose-6-P inhibition of the phosphatase. These results strongly suggest that hexose phosphate binding sites of fructose-6-P,2-kinase and fructose-2,6-bisphosphatase are distinct and located in different regions of this bifunctional enzyme.  相似文献   

14.
The nature of rat liver protein phosphatases involved in the dephosphorylation of the glycolytic key enzyme 6-phosphofructo-1-kinase and the regulatory enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase was investigated. In terms of the classification system proposed by Ingebritsen & Cohen [(1983) Eur. J. Biochem. 132, 255-261], only the type-2 protein phosphatases 2A (which can be separated into 2A1 and 2A2) and 2C act on these substrates. Fractionation of rat liver extracts by anion-exchange chromatography and gel filtration revealed that protein phosphatase 2A is responsible for most of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase phosphatase activity (activity ratio 2A/2C = 4:1). On the other hand, 6-phosphofructo-1-kinase phosphatase activity is equally distributed between protein phosphatases 2A (2A1 plus 2A2) and 2C. In addition, the possible role of low-Mr compounds for the control of purified protein phosphatase 2C was examined. At near-physiological concentrations, none of the metabolites studied significantly affected the rate of dephosphorylation of 6-phosphofructo-1-kinase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, pyruvate kinase or fructose-1,6-bisphosphatase.  相似文献   

15.
We describe the synthesis of a mixture of D-manno- and D-gluco-2,5-anhydro-1-deoxy-1-phosphonohexitol 6-phosphate via a Horner-Emmons reaction of 2,3,5-tri-O-benzyl-beta-D-arabinofuranose followed by phosphorylation of the equivalent 6-position and subsequent deprotection. This mixture inhibits fructose-1,6-bisphosphatase; the concentration required for half-maximal effect in the presence of 25 microM AMP is approximately 6 microM. The mixture of analogs also stimulates 6-phosphofructo-1-kinase from rabbit liver; the concentration required to reach one-half Vmax was found to be ca. 25 microM at 0.25 mM fructose 6-phosphate and 50 microM AMP. These analogs have replaced the labile anomeric phosphate of fructose 2,6-bisphosphate with a stable methylenephosphonate, and could be of great interest due to their appropriate physiological effects and their chemical stability.  相似文献   

16.
Treatment of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase with the arginine-specific reagent, phenylglyoxal, irreversibly inactivated both 6-phosphofructo-2-kinase and fructose-6-bisphosphatase in a time-dependent and dose-dependent manner. Fructose 6-phosphate protected against 2,6-phosphofructo-2-kinase inactivation, whereas MgGTP protected against fructose-2,6-bisphosphatase inactivation. Semi-logarithmic plots of the time course of inactivation by different phenylglyoxal concentrations were non-linear, suggesting that more than one arginine residue was modified. The stoichiometry of phenylglyoxal incorporation indicated that at least 2 mol/mol enzyme subunit were incorporated. Enzyme which had been phosphorylated by cyclic-AMP-dependent protein kinase was inactivated to a lesser degree by phenylglyoxal, suggesting that the serine residue (Ser32) phosphorylated by cyclic-AMP-dependent protein kinase interacts with a modified arginine residue. Chymotryptic cleavage of the modified protein and microsequencing showed that Arg225, in the 6-phosphofructo-2-kinase domain, was one of the residues modified by phenylglyoxal. The protection by fructose 6-phosphate against the labelling of chymotryptic fragments containing Arg225, suggests that this residue is involved in fructose 6-phosphate binding in the 6-phosphofructo-2-kinase domain of the bifunctional enzyme.  相似文献   

17.
The ability of glucagon and of adrenaline to affect the concentration of fructose 2,6-bisphosphate in isolated hepatocytes was re-investigated because of important discrepancies existing in the literature. We were unable to detect a significant difference in the sensitivity of the hepatocytes with regard to the effect of glucagon to initiate the interconversion of phosphorylase, pyruvate kinase, 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase, and also to cause the disappearance of fructose 2,6-bisphosphate. In contrast, we have observed differences in the time-course of these various changes, since the interconversions of phosphorylase and of pyruvate kinase were at least twice as fast as those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. When measured in a cell-free system in the presence of MgATP, the cyclic AMP-dependent interconversion of pyruvate kinase was 5-10-fold more rapid than those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. These data indicate that 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase are relatively poor substrates for cyclic AMP-dependent protein kinase; they also support the hypothesis that the two catalytic activities belong to a single protein. Adrenaline had only a slight effect on the several parameters under investigation, except for the activation of phosphorylase. In the absence of Ca2+ ions from the incubation medium, however, adrenaline had an effect similar to that of glucagon.  相似文献   

18.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

19.
Fructose-2,6-bisphosphatase was purified from yeast and separated from 6-phosphofructo-2-kinase and alkaline phosphatase. The enzyme released Pi from the 2-position of fructose 2,6-bisphosphate and formed fructose 6-phosphate in stoichiometric amounts. The enzyme displays hyperbolic kinetics towards fructose 2,6-bisphosphate, with a Km value of 0.3 microM. It is strongly inhibited by fructose 6-phosphate. The inhibition is counteracted by L-glycerol 3-phosphate. Phosphorylation of the enzyme by cyclic-AMP-dependent protein kinase causes inactivation, which is reversible by the action of protein phosphatase 2A.  相似文献   

20.
The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号