首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cryo-electron microscopy studies are presented on amyloid fibrils isolated from amyloidotic organs of two patients with different forms of hereditary non-neuropathic systemic amyloidosis, caused, respectively, by Leu60Arg apolipoprotein AI and Asp67His lysozyme. Although ex vivo amyloid fibrils were thought to be more uniform in structure than those assembled in vitro, our findings show that these fibrils are also quite variable in structure. Structural disorder and variability of the fibrils have precluded three-dimensional reconstruction, but averaged cryo-electron microscopy images suggest models for protofilament packing in the lysozyme fibrils. We conclude that ex vivo amyloid fibrils, although variable, assemble as characteristic structures according to the identity of the precursor protein.  相似文献   

2.
Single-particle cryo-electron microscopy (cryo-EM) is a technique that takes projection images of biomolecules frozen at cryogenic temperatures. A major advantage of this technique is its ability to image single biomolecules in heterogeneous conformations. While this poses a challenge for data analysis, recent algorithmic advances have enabled the recovery of heterogeneous conformations from the noisy imaging data. Here, we review methods for the reconstruction and heterogeneity analysis of cryo-EM images, ranging from linear-transformation-based methods to nonlinear deep generative models. We overview the dimensionality-reduction techniques used in heterogeneous 3D reconstruction methods and specify what information each method can infer from the data. Then, we review the methods that use cryo-EM images to estimate probability distributions over conformations in reduced subspaces or predefined by atomistic simulations. We conclude with the ongoing challenges for the cryo-EM community.  相似文献   

3.
Unstained microtubules embedded in amorphous ice have been studied by cryo-electron microscopy and image reconstruction. The structural integrity is well preserved, judging by the similarity of optical diffraction patterns with X-ray fiber diagrams. Protofilaments are not straight but show a variable right-handed twist around the tubule axis with a pitch of several micron. While rapid freezing of warm solutions (about 37 degrees C) leaves microtubules intact, gradual cooling, followed by rapid freezing, allows one to visualize the time-course of microtubule breakdown. Disassembly proceeds both from the ends and from inside, and short protofilament fragments are among the early breakdown products.  相似文献   

4.
CopA uses ATP to pump Cu(+) across cell membranes. X-ray crystallography has defined atomic structures of several related P-type ATPases. We have determined a structure of CopA at 10?? resolution by cryo-electron microscopy of a new crystal form and used computational molecular docking to study the interactions between the N-terminal metal-binding domain (NMBD) and other elements of the molecule. We found that the shorter-chain lipids used to produce these crystals are associated with movements of the cytoplasmic domains, with a novel dimer interface and with disordering of the NMBD, thus offering evidence for the transience of its interaction with the other cytoplasmic domains. Docking identified a binding site that matched the location of the NMBD in our previous structure by cryo-electron microscopy, allowing a more detailed view of its binding configuration and further support for its role in autoinhibition.  相似文献   

5.
During protein biosynthesis, ribosomes are believed to go through a cycle of conformational transitions. We have identified some of the most variable regions of the E. coli 70S ribosome and its subunits, by means of cryo-electron microscopy and three-dimensional (3D) reconstruction. Conformational changes in the smaller 30S subunit are mainly associated with the functionally important domains of the subunit, such as the neck and the platform, as seen by comparison of heat-activated, non-activated and 50S-bound states. In the larger 50S subunit the most variable regions are the L7/L12 stalk, central protuberance and the L1-protein, as observed in various tRNA-70S ribosome complexes. Difference maps calculated between 3D maps of ribosomes help pinpoint the location of ribosomal regions that are most strongly affected by conformational transitions. These results throw direct light on the dynamic behavior of the ribosome and help in understanding the role of these flexible domains in the translation process.  相似文献   

6.
Cryo-electron microscopy has furnished direct evidence for conformational changes of the ribosome as it proceeds, in a cyclic manner, through different functional states. Strategies to explore the ribosome dynamics include trapping of particular functionally meaningful states by chemical, genetic, or physical means. The new atomic information obtained by X-ray crystallography should make it possible to track conformational changes observed by cryo-electron microscopy to changes of the underlying structural framework of the ribosome.  相似文献   

7.
In 1898, the Golgi apparatus was discovered by light microscopy, and since the 1950s, the ultrastructure composition is known by electron microscopic investigation. The complex three-dimensional morphology fascinated researchers and was sometimes even the driving force to develop novel visualization techniques. However, the highly dynamic membrane systems of Golgi apparatus are delicate and prone to fixation artifacts. Therefore, the understanding of Golgi morphology and its function has been improved significantly with the development of better preparation methods. Nowadays, cryo-fixation is the method of choice to arrest instantly all dynamic and physiological processes inside cells, tissues, and small organisms. Embedded in amorphous ice, such samples can be further processed by freeze substitution or directly analyzed in their fully hydrated state by cryo-electron microscopy and tomography. Even though the overall morphology of vitrified Golgi stacks is comparable to well-prepared and resin-embedded samples, previously unknown structural details can be observed solely based on their native density. At this point, any further improvement of sample preparation would gain novel insights, perhaps not in terms of general morphology, but on fine structural details of this dynamic organelle.  相似文献   

8.
9.
We report on a new method based on Fourier transform infrared (FTIR)-difference spectroscopy for studying the conformational changes occurring during the photocycle of bacteriorhodopsin. Previous studies have been made by measuring the absorbance of an infrared (IR) beam transmitted through a thin hydrated purple membrane film. In contrast, the present study utilizes the technique of attenuated total reflection (ATR). Purple membrane is fixed on the surface of a germanium internal reflection crystal and immersed in a buffer whose pH and ionic composition can be varied. Measurements of the amide I and II absorbance with light polarized parallel and at 45 degrees to the crystal surface reveals that the membrane is highly oriented. An ATR-FTIR-difference spectrum of the light to dark (bR570 to bR548) transition is similar but not identical to the transmittance FTIR-difference spectrum. This disagreement between the two methods is shown to be due in the ATR case to the absorption of transition moments oriented predominantly out of the membrane plane. Raising the pH of La3+ substituted purple membrane films from 6.8 to 8.0 slows the M-decay rate sufficiently so that a bR570 to M412 difference spectrum can be obtained with steady state illumination at room temperature. A comparison of this difference spectrum with that obtained at -23 degrees C using the transmittance method reveals several changes that cannot be attributed to out-of-plane transition moments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Highlights? We have determined the cryo-EM structures of ORC, ORC-DNA, and ORC-Cdc6-DNA ? We show that ORC is arranged as Orc1:Orc4:Orc5:Orc2:Orc3, with Orc6 binding to Orc2 ? DNA and Cdc6 binding causes large conformational changes in ORC ? Origin DNA is proposed to bind to the interior surface of the crescent-shaped ORC  相似文献   

11.
The chaperonin GroEL drives its protein-folding cycle by cooperatively binding ATP to one of its two rings, priming that ring to become folding-active upon GroES binding, while simultaneously discharging the previous folding chamber from the opposite ring. The GroEL-ATP structure, determined by cryo-EM and atomic structure fitting, shows that the intermediate domains rotate downward, switching their intersubunit salt bridge contacts from substrate binding to ATP binding domains. These observations, together with the effects of ATP binding to a GroEL-GroES-ADP complex, suggest structural models for the ATP-induced reduction in affinity for polypeptide and for cooperativity. The model for cooperativity, based on switching of intersubunit salt bridge interactions around the GroEL ring, may provide general insight into cooperativity in other ring complexes and molecular machines.  相似文献   

12.
Recent advances in cryo-electron microscopy and single-particle reconstruction (collectively referred to as 'cryoEM') have made it possible to determine the three-dimensional (3D) structures of several macromolecular complexes at near-atomic resolution ( approximately 3.8-4.5A). These achievements were accomplished by overcoming the challenges in sample handling, instrumentation, image processing, and model building. At near-atomic resolution, many detailed structural features can be resolved, such as the turns and deep grooves of helices, strand separation in beta sheets, and densities for loops and bulky amino acid side chains. Such structural data of the cytoplasmic polyhedrosis virus (CPV), the Epsilon 15 bacteriophage and the GroEL complex have provided valuable constraints for atomic model building using integrative tools, thus significantly enhancing the value of the cryoEM structures. The CPV structure revealed a drastic conformational change from a helix to a beta hairpin associated with RNA packaging and replication, coupling of RNA processing and release, and the long sought-after polyhedrin-binding domain. These latest advances in single-particle cryoEM provide exciting opportunities for the 3D structural determination of viruses and macromolecular complexes that are either too large or too heterogeneous to be investigated by conventional X-ray crystallography or nuclear magnetic resonance (NMR) methods.  相似文献   

13.
The rabies virus (RABV) continues to be a worldwide health problem. RABV contains a single-stranded RNA genome that associates with the nucleoprotein N. The resulting ribonucleoprotein complex is surrounded by matrix protein M, lipid bilayer and glycoprotein G. RABV was reported to organize in bullet-like virions, but the role of each viral component in adopting this morphology is unclear. We present here a cryo-electron tomography study of RABV showing additional morphologies consisting in bullet-like virions containing a tubular, lipidic appendage having G-protein at its apex. In addition, there was evidence for an important fraction of pleomorphic particles. These pleomorphic forms differed in the amount of membrane-associated M-, M/N-protein providing interesting insight into its role in viral morphogenesis. In the absence of membrane-associated M-, M/N-protein viral morphology was almost spherical. Other images, showing straight membrane portions, correlate with the M-protein recruitment at the membrane independently of the presence of the G-protein. The viral membrane was found to contain a negative net charge indicating that M-, M/N-protein-membrane charge attraction drives this interaction.  相似文献   

14.
Splicing of pre-mRNA occurs in a multicomponent macromolecular machine--the spliceosome. The spliceosome can be assembled in vitro by a stepwise assembly of a number of snRNPs and additional proteins on exogenously added pre-mRNA. In contrast, splicing in vivo occurs in preformed particles where endogenous pre-mRNAs are packaged with all five spliceosomal U snRNPs (penta-snRNP) together with other splicing factors. Here we present a three-dimensional image reconstruction by cryo-electron microscopy of native spliceosomes, derived from cell nuclei, at a resolution of 20 angstroms. The structure revealed an elongated globular particle made up of two distinct subunits connected to each other leaving a tunnel in between. We show here that the larger subunit is a suitable candidate to accommodate the penta-snRNP, and that the tunnel could accommodate the pre-mRNA component of the spliceosome. The features this structure reveals provide new insight into the global architecture of the native splicing machine.  相似文献   

15.
Thermal behavior of intact and LC-2 deficient myosin obtained from bovine heart was studied using EPR and DSC techniques. The reactive thiol sites (Cys 704) of myosin was labelled with 4-maleimidopiperidine-nitroxyl, and the measurements were taken in X-band in the conventional and saturation transfer EPR time domains. DSC scans were made from 5 degrees up to 60 degrees C with 0.25 degree C/min scan rate. Bovine heart myosin was isolated by standard methods. The LC-2 deficient myosin was prepared by cleaving myosin with alpha-chymotrypsin (400:1 molar ratio) for 1.5 min at 25 degrees. Our basic finding was a conformational change in LC-2 deficient myosin detected at 18 degrees C. It was not observed in intact myosin suggesting that the dissociation of the regulatory light chain resulted in a local structural change in the neighbourhood of the attached label in the 20 kD domain. The rotational correlation time of the label and the microwave saturation behavior of myosin at 25 degrees C exhibited no significant differences after removal of the LC-2 light chain. However, the mobility of the same label was significantly diminished in skeletal muscle. Studying the melting behavior of myosin, six endothermic peaks were detected at 19; 41.3; 43.3; 45.5; 48.5; and 54.3 degrees C (enthalpies: 708.4; 399; 773.8; 1089; 1612.8; and 3304.8 kJ/mol). They were assigned to the segment containing the essential thiols: HMM S-2, HMM S-1 (50kD and 20kD plus 27kD) and LMM. Removal of the LC-2 light chain was associated with the disappearance of the 18 degrees transition showing again a structural change in LC-2 deficient myosin which extended to a larger region.  相似文献   

16.
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains.  相似文献   

17.
18.
We describe an algorithm for finding particle images in cryo-EM micrographs. The algorithm starts from a crude 3D map of the target particle, computed from a relatively small number of manually picked images, and then projects the map in many different directions to give synthetic 2D templates. The templates are clustered and averaged and then cross-correlated with the micrographs. A probabilistic model of the imaging process then scores cross-correlation peaks to produce the final picks. We give quantitative results on two quite different target particles: keyhole limpet hemocyanin and p97 AAA ATPase. On these particles our automatic particle picker shows human performance level, as measured by the Fourier shell correlations of 3D reconstructions.  相似文献   

19.
The structure of the multisubunit yeast DNA polymerase epsilon (Pol epsilon) was determined to 20-A resolution using cryo-EM and single-particle image analysis. A globular domain comprising the catalytic Pol2 subunit is flexibly connected to an extended structure formed by subunits Dpb2, Dpb3 and Dpb4. Consistent with the reported involvement of the latter in interaction with nucleic acids, the Dpb portion of the structure directly faces a single cleft in the Pol2 subunit that seems wide enough to accommodate double-stranded DNA. Primer-extension experiments reveal that Pol epsilon processivity requires a minimum length of primer-template duplex that corresponds to the dimensions of the extended Dpb structure. Together, these observations suggest a mechanism for interaction of Pol epsilon with DNA that might explain how the structure of the enzyme contributes to its intrinsic processivity.  相似文献   

20.
Lipidic phases, containing 'lipidic particles' (dioleoylphosphatidylethanolamine/cholesterol/dioleoylphosphatidylcho lin e and cardiolipin/dimyristoylphosphatidylcholine in the presence of Ca2+) have been investigated by preparing thin films from a suspension of sonicated vesicles. These thin films were vitrified and observed 'directly' by cryo-electron microscopy in their hydrated form. The thin films show various fusion products and fusion intermediates such as lipidic particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号