首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A versatile green fluorescent protein (GFP) expression cassette containing the replication origins of the monopartite begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) is described. Transgenic Nicotiana benthamiana plants containing one copy of the cassette stably integrated into their genome were superinfected with TYLCSV, which mobilized and replicated the cassette as an episomal replicon. The expression of the reporter gene (the GFP gene) was thereby modified. Whereas GFP fluorescence was dimmed in the intercostal areas, an increase of green fluorescence in veins of all leaves placed above the inoculation site, as well as in transport tissues of roots and stems, was observed. The release of episomal trans replicons from the transgene and the increase in GFP expression were dependent on the cognate geminiviral replication-associated protein (Rep) and required interaction between Rep and the intergenic region of TYLCSV. This expression system is able to monitor the replication status of TYLCSV in plants, as induction of GFP expression is only produced in those tissues where Rep is present. To further confirm this notion, the expression of a host factor required for geminivirus replication, the proliferating cellular nuclear antigen (PCNA) was transiently silenced. Inhibition of PCNA prevented GFP induction in veins and reduced viral DNA. We propose that these plants could be widely used to easily identify host factors required for geminivirus replication by virus-induced gene silencing.  相似文献   

2.
Gentle methods for minicell lysis and lysate fractionation have been elaborated: lysis by T4 lysozyme without detergents, and fractionation by equilibrium sedimentation in a metrizamide density gradient, both at low ionic strength. In the lysates of phage-lambda-infected minicells the lambda DNA, trapped at a prereplicative step [Witkiewicz, H. and Taylor, K. (1979) Biochim. Biophys. Acta 564, 31-36], appeared in two peaks of different buoyant densities: as a membrane-bound and a free lambda DNA. The covalently-closed-circular form of lambda DNA appeared exclusively in the membrane fraction. The lambda-coded proteins, synthesized in lambda-infected minicells, appeared in two major fractions: as membrane-bound and as free proteins, and in one minor fraction, bound with free lambda DNA. Neither lambda protein engaged in the initiation of DNA replication was present in the fraction of free proteins: the P-gene product was membrane-associated, and the O-gene product formed a complex with free lambda DNA. The effect of high ionic strength (KCl) and of detergents (Triton X-100 and sarcosyl) on the binding of replication proteins with lambda DNA and with the membrane was studied. The non-ionic detergent, Triton X-100 caused displacement of a part of lambda DNA from the membrane to the free lambda DNA peak; both lambda replication proteins were bound with free lambda DNA. The binding of the O protein with lambda DNA was relatively stable, but was destroyed by the ionic detergent, sarcosyl.  相似文献   

3.
The geminivirus replication factor AL1 interacts with the plant retinoblastoma-related protein (pRBR) to modulate host gene expression. The AL1 protein of tomato golden mosaic virus (TGMV) binds to pRBR through an 80-amino-acid region that contains two highly predicted α-helices designated 3 and 4. Earlier studies suggested that the helix 4 motif, whose amino acid sequence is strongly conserved across geminivirus replication proteins, plays a role in pRBR binding. We generated a series of alanine substitutions across helix 4 of TGMV AL1 and examined their impact on pRBR binding using yeast two-hybrid assays. These experiments showed that several helix 4 residues are essential for efficient pRBR binding, with a critical residue being a leucine at position 148 in the middle of the motif. Various amino acid substitutions at leucine-148 indicated that both structural and side chain components contribute to pRBR binding. The replication proteins of the geminiviruses tomato yellow leaf curl virus and cabbage leaf curl virus (CaLCuV) also bound to pRBR in yeast dihybrid assays. Mutation of the leucine residue in helix 4 of CaLCuV AL1 reduced binding. Together, these results suggest that helix 4 and the conserved leucine residue are part of a pRBR-binding interface in begomovirus replication proteins.  相似文献   

4.
Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells after accumulation of host replication machinery. Tomato golden mosaic virus (TGMV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) encode a protein, RepAC1 (or Rep), that is essential for viral replication. Rep/RepAC1 is an oligomeric protein that binds to double-stranded DNA, catalyzes cleavage and ligation of single-stranded DNA, and is sufficient for host induction. It also interacts with several host proteins, including the cell cycle regulator, retinoblastoma, and essential components of the cell DNA replication machinery, like proliferating nuclear cell antigen (PCNA) and RFC-1. To identify other cellular proteins that interact with Rep/RepAC1 protein, a Nicotiana benthamiana cDNA library was screened with a yeast two-hybrid assay. The host cell sumoylation enzyme, NbSCE1 (N. benthamiana SUMO-conjugating enzyme, homolog to Saccharomyces cerevisiae UBC9), was found to interact specifically with RepAC1. Mapping studies localized the interaction to the N-terminal half of RepAC1. Effects on geminivirus replication were observed in transgenic plants with altered levels of SUMO, the substrate for UBC9.  相似文献   

5.
M F Pinkston  A H Ritter  H J Li 《Biochemistry》1976,15(8):1676-1685
Interactions between DNA and model proteins, poly(L-Lys(m)L-Ala(n)), where m + n = 100%, have been investigated using thermal denaturation and circular dichroism (CD). All complexes of DNA with these proteins precipitate in a small range of input ratios, protein to DNA, with the midpoints of all precipitation curves close to a 1:1 ratio of lysine to phosphate. The melting temperature of model protein-bound DNA regions decreases slightly as the alanine content of the model protein is increased, which can be explained as a result of insufficient charge neutralization of phosphates by lysine residues in the model proteins. In the free state, these model proteins possess varying amounts of alpha helix, random coil, or a mixture of these two, depending upon the relative lysine/alanine content. When bound to DNA, the CD of the complex shows a substantial increase in alpha-helical structure for those model proteins with 40-60% alanine, while there is no significant change in alpha-helical structure when the percent alanine is either substantially higher or lower (i.e., 81 or 19% alanine). Only those complexes formed with model proteins having 40-60% alanine undergo a drastic transition from a B-type CD to an A-type in the presence of intermediate ionic strength (0.2 M NaCl, for example). Poly(Lys19Ala81)-DNA complexes show a slight transition toward A-type CD at 0.4 M NaCl or higher. Apparently other factors, in addition to alanine and alpha-helical content, must be responsible for this B leads to A transition. At the other extreme of lysine/alanine ratio, with high lysine content, poly(Lys81Ala19) or polylysine, the presence of NaCl produces a B leads to psi transition. The possible significance of these differences in response to the binding of these model proteins is discussed.  相似文献   

6.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

7.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two single-stranded circular DNAs, A and B, that replicate through a rolling-circle mechanism in nuclei of infected plant cells. The TGMV origin of replication is located in a conserved 5' intergenic region and includes at least two functional elements: the origin recognition site of the essential viral replication protein, AL1, and a sequence motif with the potential to form a hairpin or cruciform structure. To address the role of the hairpin motif during TGMV replication, we constructed a series of B-component mutants that resolved sequence changes from structural alterations of the motif. Only those mutant B DNAs that retained the capacity to form the hairpin structure replicated to wild-type levels in tobacco protoplasts when the viral replication proteins were provided in trans from a plant expression cassette. In contrast, the same B DNAs replicated to significantly lower levels in transient assays that included replicating, wild-type TGMV A DNA. These data established that the hairpin structure is essential for TGMV replication, whereas its sequence affects the efficiency of replication. We also showed that TGMV AL1 functions as a site-specific endonuclease in vitro and mapped the cleavage site to the loop of the hairpin. In vitro cleavage analysis of two TGMV B mutants with different replication phenotypes indicated that there is a correlation between the two assays for origin activity. These results suggest that the in vivo replication results may reflect structural and sequence requirements for DNA cleavage during initiation of rolling-circle replication.  相似文献   

8.
Prion formation involves the conversion of soluble proteins into an infectious amyloid form. This process is highly specific, with prion aggregates templating the conversion of identical proteins. However, in some cases non-identical prion proteins can interact to promote or inhibit prion formation or propagation. These interactions affect both the efficiency with which prion diseases are transmitted across species and the normal physiology of yeast prion formation and propagation. Here we examine two types of heterologous prion interactions: interactions between related proteins from different species (the species barrier) and interactions between unrelated prion proteins within a single species. Interestingly, although very subtle changes in protein sequence can significantly reduce or eliminate cross-species prion transmission, in Saccharomyces cerevisiae completely unrelated prion proteins can interact to affect prion formation and propagation.  相似文献   

9.
Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells by using plant DNA polymerases. These viruses encode a protein designated AL1, Rep, or AC1 that is essential for viral replication. AL1 is an oligomeric protein that binds to double-stranded DNA, catalyzes the cleavage and ligation of single-stranded DNA, and induces the accumulation of host replication machinery. It also interacts with several host proteins, including the cell cycle regulator retinoblastoma-related protein (RBR), the DNA replication protein PCNA (proliferating cellular nuclear antigen), and the sumoylation enzyme that conjugates SUMO to target proteins (SUMO-conjugating enzyme [SCE1]). The SCE1-binding motif was mapped by deletion to a region encompassing AL1 amino acids 85 to 114. Alanine mutagenesis of lysine residues in the binding region either reduced or eliminated the interaction with SCE1, but no defects were observed for other AL1 functions, such as oligomerization, DNA binding, DNA cleavage, and interaction with AL3 or RBR. The lysine mutations reduced or abolished virus infectivity in plants and viral DNA accumulation in transient-replication assays, suggesting that the AL1-SCE1 interaction is required for viral DNA replication. Ectopic AL1 expression did not result in broad changes in the sumoylation pattern of plant cells, but specific changes were detected, indicating that AL1 modifies the sumoylation state of selected host proteins. These results established the importance of AL1-SCE1 interactions during geminivirus infection of plants and suggested that AL1 alters the sumoylation of selected host factors to create an environment suitable for viral infection.  相似文献   

10.
The 195- and 214-amino-acid (aa) forms of the delta protein (deltaAg-S and deltaAg-L, respectively) of hepatitis delta virus (HDV) differ only in the 19-aa C-terminal extension unique to deltaAg-L. deltaAg-S is needed for genome replication, while deltaAg-L is needed for particle assembly. These proteins share a region at aa 12 to 60, which mediates protein-protein interactions essential for HDV replication. H. Zuccola et al. (Structure 6:821-830, 1998) reported a crystal structure for a peptide spanning this region which demonstrates an antiparallel coiled-coil dimer interaction with the potential to form tetramers of dimers. Our studies tested whether predictions based on this structure could be extrapolated to conditions where the peptide was replaced by full-length deltaAg-S or deltaAg-L, and when the assays were not in vitro but in vivo. Nine amino acids that are conserved between several isolates of HDV and predicted to be important in multimerization were mutated to alanine on both deltaAg-S and deltaAg-L. We found that the predicted hierarchy of importance of these nine mutations correlated to a significant extent with the observed in vivo effects on the ability of these proteins to (i) support in trans the replication of the HDV genome when expressed on deltaAg-S and (ii) act as dominant-negative inhibitors of replication when expressed on deltaAg-L. We thus infer that these biological activities of deltaAg depend on ordered protein-protein interactions.  相似文献   

11.
12.
The geminivirus replication protein AL1 interacts with retinoblastoma-related protein (RBR), a key regulator of the plant division cell cycle, to induce conditions permissive for viral DNA replication. Previous studies of tomato golden mosaic virus (TGMV) AL1 showed that amino acid L148 in the conserved helix 4 motif is critical for RBR binding. In this work, we examined the effect of an L148V mutation on TGMV replication in tobacco cells and during infection of Nicotiana benthamiana plants. The L148V mutant replicated 100 times less efficiently than wild-type TGMV in protoplasts but produced severe symptoms that were delayed compared to those of wild-type infection in plants. Analysis of progeny viruses revealed that the L148V mutation reverted at 100% frequency in planta to methionine, leucine, isoleucine, or a second-site mutation depending on the valine codon in the initial DNA sequence. Similar results were seen with another geminivirus, cabbage leaf curl virus (CaLCuV), carrying an L145A mutation in the equivalent residue. Valine was the predominant amino acid recovered from N. benthamiana plants inoculated with the CaLCuV L145A mutant, while threonine was the major residue in Arabidopsis thaliana plants. Together, these data demonstrated that there is strong selection for reversion of the TGMV L148V and CaLCuV L145A mutations but that the nature of the selected revertants is influenced by both the viral background and host components. These data also suggested that high mutation rates contribute to the rapid evolution of geminivirus genomes in plants.  相似文献   

13.
Selth LA  Randles JW  Rezaian MA 《FEBS letters》2002,516(1-3):179-182
We have previously shown that the soil-borne plant pathogen Agrobacterium tumefaciens supports the replication of tomato leaf curl geminivirus (Australian isolate) (TLCV) DNA. However, the reproducibility of this observation with other geminiviruses has been questioned. Here, we show that replicative DNA forms of three other geminiviruses also accumulate at varying levels in Agrobacterium. Geminiviral DNA constructs that lacked the ability to replicate in Agrobacterium were rendered replication-competent by changing their configuration so that two copies of the viral ori were present. Furthermore, we report that low-level replication of TLCV DNA can occur in Escherichia coli containing a dimeric TLCV construct in a high copy number plasmid. These findings were reinforced by expression studies using beta-glucuronidase which revealed that all six TLCV promoters are active in Agrobacterium, and two are functional in E. coli.  相似文献   

14.
Geminiviruses are plant pathogens that replicate by a rolling-circle mechanism, analogous to that used by several prokaryotic ssDNA replicons. Recent reports provide important progress in understanding the structure and functioning of replication origin from these viruses. We have used these data to propose models for the initiation of replication in dicot- and monocot-infecting geminiviruses.  相似文献   

15.
16.
The sequence motifs present in the replication initiator protein (Rep) of geminiviruses have been compared with those present in all known rolling circle replication initiators. The predicted secondary structures of Rep representing each group of organisms have been compared and found to be conserved. Regions of recombination in the Rep gene and the adjoining 5′ intergenic region (IR) of representative species of Geminiviridae have been identified using Recombination Detection Programs. The possible implications of such recombinations on the increasing host range of geminivirus infections are discussed.  相似文献   

17.
Interactions between GPI-anchored proteins and membrane lipids   总被引:9,自引:0,他引:9  
Proteins anchored in membranes by glycosylphosphatidylinositol (GPI) are widely distributed, but the function of this unusual anchor is a puzzle. Recent evidence shows that these proteins can associate with membrane lipids in special ways. One function of GPI anchorage may be to allow proteins to interact with specialized membrane domains.  相似文献   

18.
Pelaprat D 《Peptides》2006,27(10):2476-2487
Three neurotensin (NT) receptors have been cloned to date, two of which, NTS1 and NTS2, belong to the family of seven transmembrane domain receptors coupled to G proteins (GPCRs). NTS1 and NTS2 may activate multiple signal transduction pathways, involving several G proteins. However, whereas NT acts as an agonist towards all NTS1-mediated pathways, this peptide may exert either agonist or antagonist activities, depending on the NTS2-mediated pathway in question. Studies on these receptors reinforce the concept of independence between multiple signals potentially mediated through a single GPCR, generating a wide diversity of functional responses depending on the host cell and the ligand.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号