首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptomyces hydrogenans 3 alpha,20 beta-hydroxysteroid dehydrogenase reduces the C20 ketone on glucocorticoids and progestins. We find that two licorice-derived compounds, glycyrrhizic acid and carbenoxolone, inhibit this enzyme with microM Kis. Inhibition is competitive, indicating that these compounds are binding at or close to the catalytic site. Carbenoxolone's high aqueous solubility and affinity for 3 alpha,20 beta-hydroxysteroid dehydrogenase enabled us to prepare crystals of a carbenoxolone-NADH-enzyme ternary complex, which preliminary X-ray analysis indicates has a crystal structure that is significantly different from that of the 3 alpha,20 beta-hydroxysteroid dehydrogenase-NADH complex. A comparison of the tertiary structures of these two complexes should prove useful in understanding this enzyme's catalytic mechanism, as well as those of two homologous enzymes, mammalian 11 beta-hydroxysteroid dehydrogenase and 15-hydroxyprostaglandin dehydrogenase that also are inhibited by carbenoxolone.  相似文献   

2.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F2 alpha by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F2 alpha by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

3.
H H Tai 《Biochemistry》1976,15(21):4586-4592
The stereospecificity of swine renal NAD+-dependent 15-hydroxyprostaglandin dehydrogenase has been determined. It was found that the enzyme is a B-side specific dehydrogenase. (15S)-[15-3H]Prostaglandins were synthesized by stereospecific transfer of the tritium label of D-[1-3H]galactose to prostaglandins by coupling 15-hydroxyprostaglandin dehydrogenase with beta-D-galactose dehydrogenase, an enzyme of the same stereospecificity. A simple and sensitive assay for 15-hydroxyprostaglandin dehydrogenase was developed based on the stereospecific transfer of the tritium label of tritiated prostaglandins to glutamate by coupling 15-hydroxyprostaglandin dehydrogenase with glutamate dehydrogenase. The amount of prostaglandin oxidized is determined by the radioactivity of labeled glutamate present in the supernatant after charcoal precipitation of labeled prostaglandin. Concurrent assays with the present tritium release method and the thin-layer chromatography method indicated excellent correlation. The assay was employed to study some of the properties of swine renal 15-hydroxyprostaglandin dehydrogenase in crude extract and the distribution of enzyme activity in various tissues of rat. Enzyme activity was linear for the first 10 min studied and was nonlinear with increasing amounts of crude enzyme, indicating the possible presence of endogenous inhibitor(s). Apparent Km's for PGE2, PGF2alpha, and PGA2 were found to be 2.5, 12.5, and 3.9 muM, respectively. The distribution pattern indicated high levels of enzyme activity in gastrointestinal tract, lung, kidney, and spleen. The assay method may prove to be valuable for studying enzyme turnover and enzyme regulation by hormonal and pharmacological agents.  相似文献   

4.
Two types of 15-hydroxyprostaglandin dehydrogenase (NAD+ and NADP+ dependent) were demonstrated in bovine mesentric arteries and veins. The 15-hydroxyprostaglandin dehydrogenase activity was found in the high-speed supernatant, suggesting that these enzymes are associated with the cytoplasmic fraction of the blood vessels. The levels of activities of both NAD+- and NADP+-dependent dehydrogenases were similar in mesentric blood vessels. Prostaglandin F was preferred to the prostaglandin E2 as subtrate by both NAD+ and NADP+ dependent enzymes. The presence of 15-hydroxyprostaglandin dehydrogenase in blood vessels may play a siginificant role in the regulation of intracellular levels of prostaglandins of the E and F series in blood vessels.  相似文献   

5.
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S) hydroxyl group of prostaglandins to a 15-keto group resulting in a significant reduction of the biological activities of prostaglandins. Although the key residues involved in NAD+ binding and in catalytic activity have been partially identified, the sites of interaction of the enzyme with the prostaglandin substrates are yet to be determined. Homology analysis of the primary structures of 15-PGDH from human, mouse and rat indicates that the sequences are almost homologous except for two regions near the C-terminus. The involvement of the C-terminal region in catalytic activity was examined by studies on C-terminally truncated enzymes and on human/rat chimeric enzymes. When three to four amino acids were removed successively from the C-terminal end of human 15-PGDH, the truncated enzymes exhibited decreasing Vmax/Km ratios and increasing Km values for PGE2 as the chain was shortened. Similarly, when the C-terminal 14 amino acids of human 15-PGDH were replaced by the C-terminal 14 amino acids of rat 15-PGDH or vice versa, the Vmax/Km ratios and the Km values for prostaglandin E2 of the chimeric enzymes were in between those of the two wild-type enzymes. This indicates that the catalytic effectiveness of human 15-PGDH decreases as the C-terminal region is gradually removed or replaced by rat sequences. The C-terminal region appears to be more important for the interaction of the enzyme with the prostaglandin substrates than with the coenzyme.  相似文献   

6.
The dissociation constants for the interactions between some prostaglandin analogues and a prostaglandin F2 receptor in bovine corpora lutea were determined. These values were compared to the antifertility potencies of these compounds in hamsters and the rates of metabolism by 15-hydro-syprostaglandin dehydrogenase. The most active analogues with regard to both affinity for the receptor and luteolytic potency were 17-phenyl-18, 19, 20-trinorprostaglandin F2alpha and 15-methylprostaglandin F2alpha. The alkyl side chain of prostaglandins could be modified considerably without altering the affinity for the receptor. In this way metabolism by 15-hydroxyprostaglandin dehydrogenase could be blocked. Some of these compounds -ad greatly increased luteolytic effects. Substitution of a phenyl group for the 3 terminal carbon units of the alkyl side chain of prostaglandins increased both the affinity for the receptor and the luteolytic activity in vivo. 7-oxa-13-prostynoic acid, an antagonist of the luteolytic effect of prostaglandin F2alpha in vivo was a weak competitive inhibitor of the interation between prostaglandin F2alpha and the receptor.  相似文献   

7.
Although numerous data exist concerning tritium kinetic isotope effect in enzymic reactions, little is related to the metabolism of tritiated prostaglandins. The present study reports an evaluation of the kinetic isotope effect which occurs during the oxidation of 15-hydroxyl group of tritium-labeled prostaglandins E2 and F by the 15-hydroxyprostaglandin dehydrogenase and during the oxidation of 9-hydroxyl group of tritium-labeled prostaglandin F by the 9-hydroxyprostaglandin dehydrogenase. The large kinetic isotope effect tends to limit the validity of the dehydrogenase assay using tritium-labeled prostaglandins as substrate. However these assays can be considered to be an indication of relative enzyme activity.  相似文献   

8.
Three types of 15-hydroxyprostaglandin dehydrogenase were identified in rabbit whole kidney homogenate when the centrifuged homogenate was sequentially fractionated by ammonium sulfate precipitation, DEAE-cellulose and Mātrex Gel Blue A chromatographies, and Sephadex gel filtration. The first type is not adsorbed to DEAE-cellulose (peak 1). It catalyzes oxidoreduction of prostaglandins at both the C-15 and C-9 positions, is more active with NADP than NAD, is inhibited by indomethacin and ethacrynic acid, and migrates as three bands on disc gel electrophoresis. The second type is adsorbed to DEAE-cellulose (peak 2). It also migrates as multiple electrophoretic bands, has similar catalytic actions and co-factor requirements as the peak 1 enzyme and is inhibited by indomethacin and ethacrynic acid. A third type of 15-hydroxyprostaglandin dehydrogenase is also adsorbed to DEAE-cellulose but is partially separable from the other peak 2 enzymes on Mātrex Gel Blue A and differs from those enzymes in preferentially oxidizing PGI2. It migrates as a single electrophoretic band and is also inhibited by indomethacin and ethacrynic acid.  相似文献   

9.
An NADP-linked 15-hydroxyprostaglandin dehydrogenase has been identified in human placental tissue and partially purified. Prostaglandins of the A and B series are good substrates for this enzyme while those of the E and F series are not. This enzymic preparation also catalyzes oxido-reductions at the 9 position of the prostaglandin molecule; these are slow compared to those occurring at the 15 position of the prostaglandins in the A and B series. Disc gel electrophoresis of the purified enzyme reveals the presence of three protein bands which contain dehydrogenase activity. Boiled placental homogenates contain an inhibitor which appears to be specific for the NADP-linked 15-hydroxyprostaglandin dehydrogenase. The inhibitor is heat stable and has a molecular weight of 6,000 – 7,000.  相似文献   

10.
A complete initial rate analysis of the forward reaction catalyzed by 15-hydroxyprostaglandin dehydrogenase from human term placenta was carried out at pH 7.4 (100mM triethanolamine) with the substrates NAD, and the prostaglandins E1, E2 and F2alpha. The limiting Michaelis constants, the dissociation constants, and the limiting maximum velocities for these substrates were calculated by fitting the obtained data by weighted linear regression analysis to the complete rate equation. The product inhibition of the reaction by NADH and 15-oxoprostaglandin was studied and the inhibition constants were graphically determined. The initial rate and inhibition patterns obtained indicate that the reaction follows kinetically an ordered Bi Bi mechanism. The prostaglandin F2alpha analogues ICI 81,008 and ICI 79,939 were not utilized by the enzyme. With ICI 81,008 a slight inhibition of the enzymatic reaction with prostaglandin F2alpha was observed, whereas ICI 79,939 showed no effect. The results are discussed with respect to their possible biological significance.  相似文献   

11.
Carbonyl reductase (CR) is an enzyme which can catalyze the oxidoreduction of various carbonyl compounds in the presence of NAD(P)H. With the PCR method, using primers carrying the conserved nucleotide sequence among mammalian CRs, we isolated three different cDNAs (CHCR1, CHCR2 and CHCR3) which encode a unique carbonyl reductase from the Chinese hamster. The PCR products of CHCR1 and CHCR2 were clearly isolated with Bpu1102I, BspEI and XmaI restriction enzymes. The nucleotide-sequence of CHCR3 was completely different from those of CHCR1 and CHCR2. The predicted double-wound betaalphabetaalpha-structures of the CHCRs suggests the presence of a typical NADP(+)-binding motif and is similar to the corresponding region of 3alpha,20beta-hydroxysteroid dehydrogenase and mouse lung tetrameric carbonyl reductase. The deduced amino acid sequence of CHCR1 showed a high homology to CHCR2 (>96%) and the other mammalian CRs (>81%). However, CHCR3 showed a high homology to human CBR3 (>86%) and a relatively lower homology to the other CHCRs (<76%). Bacterial recombinant CHCRs showed typical carbonyl reductase activities towards 4-benzoylpyridine, 4-nitrobenzaldehyde and pyridine 4-carboxyaldehyde. These three CRs showed not only 3-keto reductase of steroids, but also 20-keto reductase. However, these CRs did not show any activity of 17-keto reductase activity. Both CHCR1 and CHCR2 have prostaglandin 9-keto reductase and 15-hydroxyprostaglandin dehydrogenase activities towards PGE(2) and PGF(2alpha) from the analyses of enzymatic reaction products. The results of Western blotting and RT-PCR suggest these CHCRs have a tissue-dependent-distribution in the Chinese hamster.  相似文献   

12.
Prostate cancer cells are known to express cyclooxygenases (COXs) and synthesize prostaglandins. Catabolism of prostaglandins in these cells remains to be determined. Induction of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key metabolic inactivation enzyme, was investigated in androgen-sensitive LNCaP cells and in hormone-independent PC3 cells. 15-PGDH was found to be induced by dihydrotestosterone or testosterone in a time- and dose-dependent manner in LNCaP but not in PC3 cells as shown by activity assay and immunoblot analysis. However, prostaglandin synthetic enzymes, COX-1 and COX-2, were not found to be induced by androgens. Induction was also achieved by 17beta-estradiol and progesterone, although to a lesser extent. Induction of 15-PGDH was not blocked by steroid receptor antagonist, RU 486, nor by antiandrogen, flutamide. However, induction was inhibited by tyrosine kinase inhibitor, genistein, and by ERK kinase inhibitor, PD 98059, but not by protein kinase C inhibitor, GF109203X. These results suggest that androgens induce 15-PGDH gene expression through an unconventional nongenomic pathway.  相似文献   

13.
Chinese hamster monomeric carbonyl reductases (CHCRs) belong to the short-chain dehydrogenase/reductase (SDR) superfamily, which is a family of enzymes that metabolize many endogenous and xenobiotic compounds. We previously cloned three carbonyl reductase cDNAs-Chcr1, Chcr2, and Chcr3. By performing spectrophotometric analyses, we indicated that the enzymes CHCR1, CHCR2, and CHCR3 had similar specificities toward steroids; only CHCR3 did not show any reactivity with prostaglandins (PGs). In the present study, we investigated the characteristics of CHCRs in detail, that is, the differences in their expression patterns, physicochemical properties, and enzymatic activities. CHCR1 exhibited sex-dependent expression patterns. CHCRs showed multiple surface potentials in the zeta potential analysis and CHCR3 exhibited an isatin reductase activity with a high K(m) value. By the present HPLC-analysis, all the three enzymes exhibited PGF(2alpha) dehydrogenase activity and could oxidize PGF(2alpha) to PGE(2) and 15-keto-PGF(2alpha), i.e., the three enzymes exhibited 9- and 15-hydroxy PG dehydrogenase activities. Moreover, 15-keto-PGE(2) was detected in a comparatively higher amount in the dehydrogenase reaction products of CHCR2 than in those of CHCR1 and CHCR3, suggesting that CHCR2 can oxidize PGE(2) and/or 15-keto-PGF(2alpha) to 15-keto-PGE(2); however, these two PGs did not seem to be efficient substrates of CHCR1. Despite the differences in the dehydrogenase activities between CHCR1 and CHCR2, PGE(2) reductase activities of the two enzymes were similar, and PGF(2alpha) was predominantly produced from PGE(2) as a result of the PG 9-keto reductase activity. On the other hand, CHCR3 exhibited a reduced PGE(2) reductase activity. In conclusion, although the CHCRs share a high degree of sequence identity (>70%), they clearly differed in their enzymatic characteristics.  相似文献   

14.
Characteristics of short-chain alcohol dehydrogenases and related enzymes   总被引:39,自引:0,他引:39  
Different short-chain dehydrogenases are distantly related, constituting a protein family now known from at least 20 separate enzymes characterized, but with extensive differences, especially in the C-terminal third of their sequences. Many of the first known members were prokaryotic, but recent additions include mammalian enzymes from placenta, liver and other tissues, including 15-hydroxyprostaglandin, 17 beta-hydroxysteroid and 11 beta-hydroxysteroid dehydrogenases. In addition, species variants, isozyme-like multiplicities and mutants have been reported for several of the structures. Alignments of the different enzymes reveal large homologous parts, with clustered similarities indicating regions of special functional/structural importance. Several of these derive from relationships within a common type of coenzyme-binding domain, but central-chain patterns of similarity go beyond this domain. Total residue identities between enzyme pairs are typically around 25%, but single forms deviate more or less (14-58%). Only six of the 250-odd residues are strictly conserved and seven more are conserved in all but single cases. Over one third of the conserved residues are glycine, showing the importance of conformational and spatial restrictions. Secondary structure predictions, residue distributions and hydrophilicity profiles outline a common, N-terminal coenzyme-binding domain similar to that of other dehydrogenases, and a C-terminal domain with unique segments and presumably individual functions in each case. Strictly conserved residues of possible functional interest are limited, essentially only three polar residues. Asp64, Tyr152 and Lys156 (in the numbering of Drosophila alcohol dehydrogenase), but no histidine or cysteine residue like in the completely different, classical medium-chain alcohol dehydrogenase family. Asp64 is in the suggested coenzyme-binding domain, whereas Tyr152 and Lys156 are close to the center of the protein chain, at a putative inter-domain, active-site segment. Consequently, the overall comparisons suggest the possibility of related mechanisms and domain properties for different members of the short-chain family.  相似文献   

15.
By selecting for growth on testosterone or estradiol-17 beta as the only source of organic carbon, we have isolated a number of soil microorganisms which contain highly active and novel, inducible, NAD-linked 3 alpha-, 3 beta-, and 17 beta-hydroxysteroid dehydrogenases. Such enzymes are suitable for the microanalysis of steroids and of steroid-transforming enzymes, as well as for performing stereoselective oxidations and reductions of steroids. Of particular interest among these organisms is a new species of Alcaligenes containing 17 beta-hydroxysteroid dehydrogenase, easily separable from 3 beta-hydroxysteroid dehydrogenase. Unlike any of the other isolated organisms, this Alcaligenes sp. contained no 3 alpha-hydroxysteroid dehydrogenase activity. A large-scale purification (763-fold) to homogeneity of the major induced 17 beta-hydroxysteroid dehydrogenase was achieved by ion-exchange, hydrophobic, and affinity chromatographies. The enzyme has high specific activity for the oxidation of testosterone (Vmax = 303 mumol/min/mg of protein; Km = 3.6 microM) and reacts almost equally well with estradiol-17 beta (Vmax = 356 mumol/min/mg; Km = 6.4 microM). It consists of apparently identical subunits (Mr = 32,000) and exists in polymeric form under nondenaturing conditions (Mr = 68,000 by gel filtration and 86,000 by polyacrylamide gel electrophoresis). The isoelectric point is pH 5.1. The enzyme is almost completely specific for 17 beta-hydroxysteroids which may be delta 5-olefins or ring A phenols or have cis or trans A/B ring fusions. Substituents at other positions are tolerated, although the presence of a 16 alpha- or 16 beta-hydroxyl group blocks the oxidation of the 17 beta-hydroxyl function. 3 beta-Hydroxysteroids (A/B ring fusion trans, but not cis, or delta 5-olefins) are very poor substrates. The application of this highly active, specific, and stable 17 beta-hydroxysteroid dehydrogenase to the microestimation of steroids by enzymatic cycling of nicotinamide nucleotides and for the stereospecific oxidation of steroids is demonstrated.  相似文献   

16.
Homogenates of several mammalian tissues were measured by radioimmunoassay for 15-hydroxyprostaglandin dehydrogenase activity. Two types of enzyme activity were detected. One, which used NAD-plus as cofactor much more effectively than NADP-lus, was found in monkey lung, heart, liver, kidney, and spleen and in chicken heart and dog lung. A second type, which uses NADP-plus as a cofactor more effectively than NAD-plus, was found in monkey and human brain and red blood cells and in swine kidney. These two types of 15-hydroxyprostaglandin dehydrogenase were partially purified from monkey brain and chicken heart. In addition to different cofactor requirements, the two partially purified enzymes could be distinguished by chromatographic properties, their relative affinities for prostaglandin I2 and F2alpha, and their sensitivities to inhibition by reduced pyridine nucleotides, thyroid hormones, and prostaglandin B2.  相似文献   

17.
Homogeneous 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSD) from rat liver cytosol displays 9, 11, and 15-hydroxyprostaglandin dehydrogenase activity. Using [14C]-PGF2 alpha as substrate the products of this reaction were separated by TLC and identified by autoradiography as PGE2 and PGB2. The purified enzyme catalyzes this reaction at a rate 200 times faster than cytosol. This corresponds to the rate enhancement observed when the enzyme is purified from cytosol using androsterone (a 3 alpha-hydroxysteroid) as substrate and suggests that it may represent a major 9-hydroxyprostaglandin dehydrogenase in this tissue. Although the 3 alpha-HSD has many properties in common with the 9-hydroxyprostaglandin dehydrogenase of rat kidney, rat kidney contains no protein that is immunodetectable with polyclonal antibody raised against the purified 3 alpha-HSD.  相似文献   

18.
The case of a true hermaphrodite, with a normal ovary and an ovotestis is presented. The ovotestis was removed and incubated in vitro with tritiated steroids (testosterone, dehydroepiandrosterone, pregnenolone and 17 alpha-hydroxyprogesterone). Labeled metabolites were isolated and identified. Based upon these findings, a pathway of steroid biogenesis in this abnormal gonadal tissue is suggested. The ovotestis studied did not contain all the enzymes involved in ovarian steroidogenesis: 3 beta-hydroxysteroid dehydrogenase, isomerase, 17--20 desmolase and 17 beta-hydroxysteroid dehydrogenase were present, but other important enzymes, such as 16 and 17-hydroxylases, and aromatizing enzyme systems, were deficient or absent.  相似文献   

19.
Besides residue of the catalytic triad that is conserved in the short-chain dehydrogenase/reductase (SDR) superfamily, a Cys side chain reportedly plays functional roles in NADP-dependent 15-hydroxyprostaglandin dehydrogenase and human carbonyl reductase (CR). The three-dimensional structure of porcine 3alpha/beta,20beta-hydroxysteroid dehydrogenase, also known as porcine testicular carbonyl reductase, demonstrates the proximity of the Cys 226 side chain to the bound NADP. However, no clear explanation with respect to the basis of the catalytic function of the Cys residue is yet available. By chemical modification, point mutation, and kinetic analysis, we determine that two Cys residues, Cys 149 and Cys 226, are involved in the enzyme activity. Furthermore, we found that pretreatment with NADP markedly protects the enzyme from inactivation by 4-(hydroxyl mercury) benzoic acid (4-HMB), thereby confirming that Cys 226 is involved in binding of the cofactor. On the basis of the tertiary structure of 3alpha/beta,20beta-HSD, the possible roles of Cys residues, especially that of Cys 226, in enzyme action and in the binding of cofactor NADPH are discussed.  相似文献   

20.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号