首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
张沛欣  张颖 《生命科学》2020,32(7):717-722
端粒是染色体末端的核蛋白结构。染色体末端重复的端粒DNA可以规避不适当的DNA损伤反应(DNA damage response, DDR)的激活,维持染色体的稳定性,端粒的缺失会引起染色体融合并导致细胞的衰老及死亡。端粒特异性蛋白复合物Shelterin在保护端粒完整性方面具有重要作用。在这个复合体中,端粒结合因子2 (telomeric-repeat binding factor 2, TRF2)在维持端粒稳定、防止端粒染色体末端融合以及端粒染色体复制过程中发挥关键作用。该文综述了TRF2介导的保护染色体末端的多方面的机制。  相似文献   

2.
端粒(Telomere)是线性真核细胞染色体末端的一种结构,由高度重复的DNA序列和结合蛋白所构成。在脊椎动物中,端粒通常为富含TG简单重复序列(TFAGGG),其生物学功能是完成染色体末端复制,使DNA免受不恰当的修复以及防止端一端融合和核酸外切酶的降解(Dreesen et al.,2007)。  相似文献   

3.
端粒位于染色体末端,由短的串联重复DNA片段及其结合蛋白组成。端粒在维持基因组稳定性及染色体结构完整性方面发挥着重要作用。端粒DNA由富含G/C的序列构成,包括双链区及G含量高的3'悬垂单链区(G-overhang,G-tail)。端粒DNA能够形成G四联体(G-quadruplex)和T环(T-loop)等高级结构。许多与DNA损伤修复相关的蛋白质参与端粒DNA的复制与端粒结构的维持,并相对于基因组的其他区域,端粒的DNA复制较为特别,从广义上讲,端粒DNA的复制可以包括双链复制(telomere replication),端粒酶复制延伸(telomerase extension)和C链补齐(C-rich fill-in)。端粒双链复制引起的端粒长度缩短是导致人体细胞衰老的重要原因,而端粒酶复制延伸及C链补齐是干细胞及肿瘤细胞维持其端粒长度及持续分裂能力的主要途径。端粒复制及其结构功能研究是生物医学领域的一个重要热点,阐释端粒复制的机理将为疾病预防及治疗等提供新的思路。  相似文献   

4.
端粒位于真核细胞线性染色体末端,正常的端粒长度与结构对于细胞基因组稳定的维持有重要作用.端粒DNA序列的高度重复性使其容易形成一些特殊的二级结构,相比染色体其他位置更难复制.结合在端粒上的Shelterin蛋白复合体由六个端粒结合蛋白组成,该复合体可以通过抑制端粒处异常DNA损伤修复途径的激活维持端粒的稳定.此外,近几...  相似文献   

5.
端粒及端粒酶的研究进展   总被引:2,自引:2,他引:0  
端粒是真核细胞染色体末端的特有结构,是由端粒结合蛋白和一段重复序列的端粒DNA组成的一个高度精密的复合体,在维持染色体末端稳定性,避免染色体被核酸酶降解等方面起着重要的作用。端粒的长度、结构及组织形式受多种端粒结合因子的调控。由于端粒的重要性,在哺乳动物细胞里,端粒的长度或端粒结构变化与癌症发生及细胞衰老有密切的关系。由于末端复制问题的存在,随着细胞分裂次数的增加,端粒不断缩短,细胞不可避免的走向衰老或凋亡。由于在细胞分裂过程中端粒长度的不断缩短与细胞分裂代数增加具有相关性,即端粒长度反应了细胞的分裂次数,因此有人将端粒形象的比喻为生物时钟。在90%的癌细胞中,端粒酶被重新激活,以此来维持端粒的长度,使细胞走向永生化。简要综述了端粒、端粒酶及端粒酶结合蛋白的最新研究进展。  相似文献   

6.
端粒结合蛋白与端粒长度调节   总被引:1,自引:0,他引:1  
端粒结合蛋白与端粒长度调节郑晓飞王升启孙志贤(军事医学科学院放射医学研究所,北京100850)关键词端粒端粒结合蛋白端粒是真核细胞染色体的末端序列,其功能是保持染色体的稳定性。端粒DNA的长短和稳定性决定了细胞的寿命,并与细胞的癌变和衰老有关。端粒D...  相似文献   

7.
端粒,作为染色体末端的特殊结构,可以有效保护染色体,防止其降解、末端融合和重组。端粒酶是通过逆转录维持端粒长度的蛋白核酸复合体。二者共同构成了端粒-端粒酶系统。经过近30年的研究,人们发现该系统与人类健康密切相关。氧化应激可导致端粒结构与功能的改变。本文总结了影响端粒、端粒酶结构与功能的不同途径,并分析了氧化还原微环境和氧化应激对其的影响及对人类疾病的作用。  相似文献   

8.
在电离辐射等因素造成的DNA损伤修复信号传导过程中,共济失调毛细血管扩张症突变基因(ATM)起关键作用。同时,ATM属于P13K家族成员,其功能与保持端粒长度有关。端粒是真核细胞内染色体末端的重复的DNA序列,端粒的长短和稳定性决定了细胞的寿命。ATM突变导致端粒的不稳定性,包括端粒连接、端粒染色质结构变化,影响端粒聚集等。  相似文献   

9.
哺乳动物早期胚胎端粒和端粒酶重编程   总被引:1,自引:0,他引:1  
端粒位于真核染色体末端,是稳定染色体末端的重要元件。端粒酶(TER)是一种特殊的细胞核糖核蛋白(RNP)反转录酶(RT),其核心酶包括蛋白亚基和RNA元件。在DNA复制过程中的端粒丢失可以被有活性的端粒酶修复回来。哺乳动物端粒酶在发育中受调控,端粒的重编程可能是由于早期胚胎不同时期的端粒酶活性而造成的。因此,研究端粒和端粒酶重编程在早期胚胎发育中是非常重要的。该文综述了端粒和端粒酶的结构和功能,及其与哺乳动物早期胚胎发育的关系,并在此基础上展望了端粒和端粒酶在克隆动物胚胎发育的基础研究。  相似文献   

10.
端粒生物学与细胞衰老   总被引:3,自引:0,他引:3  
1 端粒生物学1.1 端粒的提出早在 50多年前 ,McClintock[1] 和Muller[2 ] 就分别在玉米和果蝇中发现损伤断裂后的染色体末端之间极易发生连接 ,从而形成各种类型的染色体畸变 ,如未端融和形成环状体或形成双着丝点染色体 (di centricchromosome)。但是染色体的天然末端似乎从来不与染色体断裂产生的那种末端连接。天然末端之间也不结合 ,它象一顶“帽子”那样维持着染色体末端的稳定。于是Muller提出 ,位于染色体两端的片段在细胞里具有重要的作用 ,并命名它为端粒(Telomere) [3~ 6 ] …  相似文献   

11.
Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss of telomeric DNA. The N-terminal Gly/Arg-rich domain (GAR domain) of TRF2 directly binds to the globular domain of core histones. The conserved arginine residues in the GAR domain of TRF2 are required for this interaction. A TRF2 mutant with these arginine residues substituted by alanine lost the ability to protect telomeres and induced rapid telomere shortening caused by the cleavage of a loop structure of the telomeric chromatin. These findings showed a previously unnoticed interaction between the shelterin complex and nucleosomal histones to stabilize the chromosome ends.  相似文献   

12.
Lin Cheng  Ming Cui 《Fly》2018,12(1):41-45
Telomere protects the ends of linear chromosomes. Telomere dysfunction fuels genome instability that can lead to diseases such as cancer. For over 30 years, Drosophila has fascinated the field as the only major model organism that does not rely on the conserved telomerase enzyme for end protection. Instead of short DNA repeats at chromosome ends, Drosophila has domesticated retrotransposons. In addition, telomere protection can be entirely sequence-independent under normal laboratory conditions, again dissimilar to what has been established for telomerase-maintained systems. Despite these major differences, recent studies from us and others have revealed remarkable similarities between the 2 systems. In particular, with the identification of the MTV complex as an ssDNA binding complex essential for telomere integrity in Drosophila (Zhang et al. 2016 Plos Genetics), we have now established several universal principles that are intrinsic to chromosome extremities but independent of the underlying DNA sequences or the telomerase enzyme. Telomere studies in Drosophila will continue to yield fundamental insights that are instrumental to the understanding of the evolution of telomere and telomeric functions.  相似文献   

13.
Yoo HH  Chung IK 《Aging cell》2011,10(4):557-571
Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.  相似文献   

14.
高等植物端粒和端粒酶的研究进展   总被引:5,自引:0,他引:5  
王渭霞  刘小川  朱廷恒 《遗传》2003,25(1):113-118
端粒是构成真核生物线状染色体末端重要的DNA-蛋白质复合结构,DNA由简单的串联重复序列组成。它的合成由一个特殊的具有反转录活性的核糖核蛋白-端粒酶完成。端粒对染色体、整个生物基因组,甚至对细胞的稳定都具有重要意义。本文就植物端粒、端粒酶、端粒结合蛋白,以及端粒变化、端粒酶在植物生长发育中的调节作一概述。  相似文献   

15.
David Lydall 《The EMBO journal》2009,28(15):2174-2187
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell‐cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell‐cycle division are discussed.  相似文献   

16.
17.
Telomeres, which are important for chromosome maintenance, are composed of long, repetitive DNA sequences associated with a variety of telomere-binding proteins. We characterized the organization and structure of rice telomeres and adjacent subtelomere regions on the basis of cytogenetic and sequence analyses. The length of the rice telomeres ranged from 5.1 to 10.8 kb, as revealed by both fibre-fluorescent in situ hybridization and terminal restriction-fragment assay. Physical maps of the chromosomal ends were constructed from a fosmid library. This facilitated sequencing of the telomere regions of chromosomes 1S, 2S, 2L, 6L, 7S, 7L and 8S. The resulting sequences contained conserved TTTAGGG telomere repeats, which indicates that the physical maps partly covered the telomere regions of the respective chromosome arms. These repeats were organized in the order of 5'-TTTAGGG-3' from the chromosome-specific region, except in chromosome 7S, in which seven inverted copies also existed in tandem array. Analysis of the telomere-flanking regions revealed the occurrence of deletions, insertions, or chromosome-specific substitutions of single nucleotides within the repeat sequences at the junction between the telomere and subtelomere. The sequences of the 500-kb regions of the seven chromosome ends were analysed in detail. A total of 598 genes were predicted in the telomeric regions. In addition, repetitive sequences derived from various kinds of retrotransposon were identified. No significant evidence for segmental duplication could be detected within or among the subtelomere regions. These results indicate that the rice chromosome ends are heterogeneous in both sequence and characterization.  相似文献   

18.
Telomeres prevent chromosome ends from being repaired as double‐strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence‐independent capping mechanism, we isolated proteins that interact with the HP1/ORC‐associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11–Rad50–Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.  相似文献   

19.
Telomeres are the termini of linear eukaryotic chromosomes consisting of tandem repeats of DNA and proteins that bind to these repeat sequences. Telomeres ensure the complete replication of chromosome ends, impart protection to ends from nucleolytic degradation, end-to-end fusion, and guide the localization of chromosomes within the nucleus. In addition, a combination of genetic, biochemical, and molecular biological approaches have implicated key roles for telomeres in diverse cellular processes such as regulation of gene expression, cell division, cell senescence, and cancer. This review focuses on recent advances in our understanding of the organization of telomeres, telomere replication, proteins that bind telomeric DNA, and the establishment of telomere length equilibrium.  相似文献   

20.
Restriction endonuclease-resistant high-molecular-weight (HMW)DNA fragments were isolated from nuclear DNA fragments in tobacco.The size of the fragments produced by EcoRI, HindIII, AfaI,and HaeIII ranged from 20 kb to over 166 kb. The kinetics ofdigestion by Bal31 nuclease showed that most of the HMW fragmentsare chromosome ends. The consensus sequence for tobacco telomererepeats was determined to be CCCTAAA by genomic sequencing usingthe HMW fragments and by sequencing after cloning. Besides thetelomere sequence, 9 tandem repeats of a 45-bp sequence wereidentified, in which a 35-bp unit sequence (AGTCAGCATTAGGGTTTTAAACCCTAAACTGAACT)formed a stem structure. The front of the stem is composed ofa palindrome of the telomere repeats. This highly conservedunit is surrounded by less conserved internal sequences thatare around 10–11 bp in size and contain a TTTT stretch.The internal sequences resemble the 10–11 bp consensusfor the scaffold attachment regions found in yeast and drosophila.The characteristic 45-bp sequence was abundant on the ends ofchromosomes. The shortest distance between the repeats containingtelomeric stem and the telomere was less than 20 kb. This architectureof the tobacco chromosome end region resembles the end regionof yeast chromosomes in which autonomous replication sequencesare present frequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号