首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of methylamine as the sole nitrogen, but not carbon, source by Pseudomonas sp. strain MA was investigated. Under these growth conditions, a high-affinity, low-capacity uptake system was present having a Km of 16 microM and Vmax of 2 nmol.min-.mg (dry weight) of cells that was competitively inhibited by ammonium chloride. The transport system was induced by growth on succinate with methylamine as the sole nitrogen source.  相似文献   

2.
3.
Uptake of methylamine and methanol by Pseudomonas sp. strain AM1.   总被引:2,自引:0,他引:2       下载免费PDF全文
The uptake of methylamine and of methanol by the facultative methylotroph Pseudomonas sp. strain AM1 was investigated. It was found that this organism possesses two uptake systems for methylamine. One of these operates when methylamine is the sole source of carbon, nitrogen, and energy. It has a Km of 1.33 X 10(-4) M and a Vmax of 67 nmol/min per mg of cells (dry weight). The other system, found when methylamine is the sole nitrogen source only, has a Km of 1.2 X 10(-5) M and a Vmax of 8.9 nmol/min per mg of cells (dry weight). Both uptake systems were severely inhibited by azide, cyanide, carbonyl cyanide-m-chlorophenyl hydrazone, and N-ethylmaleimide, but only the high-affinity system was inhibited by ammonium ions with a Ki of 7.7 mM. Both systems were susceptible to osmotic shock treatment, competitively inhibited by ethylamine, and unaffected by most amino acids. Methanol uptake showed a Km of 4.8 microM and a Vmax of 60.6 nmol/min per mg of cells (dry weight) and was not inhibited by osmotic shock treatment. Azide, cyanide, and N-ethylmaleimide curtailed uptake, but carbonyl cyanide-m-chlorophenyl hydrazone merely reduced the rate of uptake. A methanol dehydrogenase mutant, M15A, was unable to take up methanol. It is proposed that methanol diffuses into the cell where it is rapidly oxidized by methanol dehydrogenase.  相似文献   

4.
5.
Nitrogen-replete cells of Phaeodactylum tricomutum Bohlin assimilated ammonium and the amino acid l-arginine simultaneously. Arginine was taken up at rates expected to supply at least 30% of the cells' requirement for nitrogen; arginme-carbon mainly entered protein but, when uptake was in darkness, ≈40% was respired. Cells grown in a 12:12 h light:dark cycle with ammonium as the sole nitrogen source took up ammonium throughout the growth cycle, whereas cells grown with the addition of arginine took up little ammonium during the dark phase. The uptake of ammonium over the course of the cycle was reduced by 30% when arginine was present. Cells grown with arginine as the sole nitrogen source took up the amino acid at the rate required for growth. In contrast, cells grown on ammonium, while growing at the same rate as those on arginine, assimilated nitrogen at twice the rate. Cells grown with both sources of nitrogen present, took up arginine at the same rate as before, but more of the arginine-carbon was respired (60% as compared with 40% when ammonium was absent). The uptake of ammonium was reduced by 30%, but the total nitrogen assimilation again exceeded immediate requirements. A high uptake rate of arginine was indicative of cells assimilating ammonium only; a low uptake rate of ammonium during the dark phase of growth was indicative of cells assimilating arginine. It is not known whether the findings with P. tricomutum are applicable to other marine phytoplankton. If they are, arginine may be of greater significance as a natural source of nitrogen for phytoplankton than is generally thought.  相似文献   

6.
In DCMU‐poisoned wild‐type and in non‐photosynthetic pigment mutant cells of Chlorella kessleri , grown heterotrophically with glucose as a carbon source and with nitrate as sole nitrogen source, the known blue light‐enhanced uptake of oxygen and breakdown of starch were reduced by staurosporine and K252a, both potent inhibitors of protein kinase C. This corresponded to sensitivity to these inhibitors of blue light‐induced uptake of nitrate of such organisms. Cells grown with ammonia as sole nitrogen source responded to short wavelength visible irradiation with an increase in oxygen uptake, and this, too, was inhibited by staurosporine and K252a. However, these cells did not show any blue light‐enhanced uptake of nitrate. From these results, enhanced consumption of oxygen under blue light cannot be a consequence of blue light‐induced protein phosphorylation involved in the light‐dependent uptake of nitrate. However, existence of a specific protein phosphorylation within the process of enhancement of oxygen uptake under blue light is not yet proven by the data. There might be a master reaction that induces both processes independently, or there may be influences of other light‐induced processes which lead to enhanced starch breakdown, thereby supplying the glucose for oxidative degradation.  相似文献   

7.
Cells of the mixotrophic chemolithotroph (facultative autotroph) Thiobacillus intermedius which have been grown on a glucose-yeast extract medium, a condition in which glucose is used as a source of energy, accumulate the non-metabolizable analogue 2-deoxy-d-glucose against a concentration gradient in a predominantly unchanged state. On the other hand, cells grown mixotrophically on a thiosulfate-glucose medium, a condition in which glucose provides cell carbon but is not used extensively for energy, and in which enzymes of the Entner-Doudoroff pathway are repressed, do not accumulate 2-deoxy-d-glucose significantly. Similarly, cells grown chemolithotrophically on thiosulfate-carbonate do not take up this sugar. Transfer of thiosulfate-yeast extract-grown cells, which lack the capacity to accumulate 2-deoxy-d-glucose, to a glucose-yeast extract medium results in the induction of the concentrative sugar uptake system. The capacity of induced cells to take up 2-deoxy-d-glucose is inhibited by thiosulfate. Thus, the transport system for glucose appears to be regulated in this organism so that the sugar is accumulated only under conditions where it is utilized as a source of energy, and the presence of the preferred energy source leads to both repression and inhibition of the uptake system.  相似文献   

8.
Pseudomonas species MA was grown with methylamine as a sole source of carbon and nitrogen enabling the total flow of carbon and nitrogen into this organism to be simultaneously monitored in vivo using 13C and 15N NMR. [13C]Methylamine was rapidly and extensively incorporated into the methyl group of N-methylglutamate during high oxygenation of the cell suspension, but when the oxygenation rate was lower, a significant portion was also found in the methyl group of gamma-glutamylmethylamide. At later times the carbon label was found in intermediates of the serine assimilation pathway, with glutamate derived from the tricarboxylic acid cycle being the most abundant product. Incorporation of [15N]methylamine was only detected as N-methyl[15N]glutamate, but when protein synthesis was inhibited, the label was also detected in the amino nitrogen of glutamate. When oxygenation rates were lower, the 15N-labeled methylamine was found in the methylamide group of gamma-glutamylmethylamide in addition to being incorporated into N-methylglutamate. gamma-Glutamylmethylamide formation was linked to the overall energy state of the cell and was not affected by inhibition of the carbon assimilation pathway. Neither 5-hydroxy-N-methylpyroglutamate nor N-methyl-alpha-ketoglutaramate were detected to any significant extent. A mechanism was proposed for the role of gamma-glutamylmethylamide in the regulation of endogenous nitrogen supplies in this organism.  相似文献   

9.
Cells of Zygosaccharomyces bailii ISA 1307 grown in a medium with acetic acid, ethanol, or glycerol as the sole carbon and energy source transported acetic acid by a saturable transport system. This system accepted propionic and formic acids but not lactic, sorbic, and benzoic acids. When the carbon source was glucose or fructose, the cells displayed activity of a mediated transport system specific for acetic acid, apparently not being able to recognize other monocarboxylic acids. In both types of cells, ethanol inhibited the transport of labelled acetic acid. The inhibition was noncompetitive, and the dependence of the maximum transport rate on the ethanol concentration was found to be exponential. These results reinforced the belief that, under the referenced growth conditions, the acid entered the cells mainly through a transporter protein. The simple diffusion of the undissociated acid appeared to contribute, with a relatively low weight, to the overall acid uptake. It was concluded that in Z. bailii, ethanol plays a protective role against the possible negative effects of acetic acid by inhibiting its transport and accumulation. Thus, the intracellular concentration of the acid could be maintained at levels lower than those expected if the acid entered the cells only by simple diffusion.  相似文献   

10.
Depending on the growth conditionsParacoccus denitrificans synthesizes two different carriers mediating uptake of methylamine. When used as a nitrogen source, methylamine is transported via a NH 4 + carrier, and its transport is inhibited by NH 4 + but not by ethylamine. When used as a carbon source, methylamine is transported by a specific alkylamine carrier, and its transport is inhibited by ethylamine but not by NH 4 + . The NH 4 + carrier is under nitrogen control, the alkylamine carrier under carbon control.Abbreviations MA Methylamine - FCCP p-trifluormethoxycarbonylcyanide-phenylhydrazone  相似文献   

11.
A study was done of the pathways of nitrogen assimilation in the facultative methylotrophsPseudomonas MA andPseudomonas AM1, with ammonia or methylamine as nitrogen sources and with methylamine or succinate as carbon sources. When methylamine was the sole carbon and/or nitrogen source, both organisms possessed enzymes of the glutamine synthetase/glutamate synthase pathway, but when ammonia was the nitrogen sourcePseudomonas AM1 also synthesized glutamate dehydrogenase with a pH optimum of 9.0, andPseudomonas MA elaborated both glutamate dehydrogenase (pH optimum 7.5) and alanine dehydrogenase (pH optimum 9.0). Glutamate dehydrogenase and glutamate synthase from both organisms were solely NADPH-dependent; alanine dehydrogenase was NADH-dependent. No evidence was obtained for regulation of glutamine synthetase by adenylylation in either organism, nor did glutamine synthetase appear to regulate glutamate dehydrogenase synthesis.  相似文献   

12.
Methylamine and ammonia transport in Saccharomyces cerevisiae.   总被引:20,自引:15,他引:5       下载免费PDF全文
Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia.  相似文献   

13.
Abstract Methylophilus methylotrophus can use methylamine as sole source of carbon and nitrogen. Measurements of the specific activity of methylamine dehydrogenase (MNDH) in bacteria grown in batch or chemostat culture showed that MNDH was induced by methylamine and repressed when methanol or NH4+ were provided as alternative carbon or nitrogen sources. The degree of repression varied with the growth conditions. Methanol dehydrogenase (MDH) was present in bacteria growtn on methylamine as sole carbon source, but the specific activity was low compared with that in bacteria grown on medium containing methanol, indicating that this enzyme is induced by methanol.  相似文献   

14.
Pseudomonas putida CSV86 utilizes glucose, naphthalene, methylnaphthalene, benzyl alcohol and benzoate as the sole source of carbon and energy. Compared with glucose, cells grew faster on aromatic compounds as well as on organic acids. The organism failed to grow on gluconate, 2-ketogluconate, fructose and mannitol. Whole-cell oxygen uptake, enzyme activity and metabolic studies suggest that in strain CSV86 glucose utilization is exclusively by the intracellular phosphorylative pathway, while in Stenotrophomonas maltophilia CSV89 and P. putida KT2442 glucose is metabolized by both direct oxidative and indirect phosphorylative pathways. Cells grown on glucose showed five- to sixfold higher activity of glucose-6-phosphate dehydrogenase compared with cells grown on aromatic compounds or organic acids as the carbon source. Study of [14C]glucose uptake by whole cells indicates that the glucose is taken up by active transport. Metabolic and transport studies clearly demonstrate that glucose metabolism is suppressed when strain CSV86 is grown on aromatic compounds or organic acids.  相似文献   

15.
Methylamine uptake, oxidation, and assimilation were studied in Hansenula polymorpha, a methylotrophic yeast. The constitutive ammonia transport system was shown to be effective at accumulating methylamine within cells cultured with methylamine or ammonia as a nitrogen source. [13C]methylamine oxidation rates were measured in vivo in methylamine-adapted cells by 13C nuclear magnetic resonance and were found to be lower than its uptake rate into the cells. The 13C label of methylamine was found exclusively in trehalose and glycerol, and [13C]formaldehyde was also extensively assimilated, indicating the presence of an assimilation pathway for the methylamine carbon. In vivo 31P nuclear magnetic resonance analysis showed major differences in the endogenous polyphosphate levels and mean chain length during adaptation of the cells from ammonia to methylamine, indicating that methylamine accumulated in the vacuole in the same manner as basic amino acids and purines. [13C]glucose metabolism was drastically altered during adaptation of the cells from ammonia to methylamine as a nitrogen source. The total rate of glucose utilization and the rate of ethanol production fell. Direct trehalose synthesis from glucose increased, indicating a switch from carbon utilization for growth to that for storage. The rate of methylamine oxidation was sufficient to support a much higher flow of carbon into central biosynthetic pathways. These results suggest that this reduction in biosynthetic carbon flow, rather than nitrogen availability, was the main factor responsible for reducing the growth rate of the yeast when ammonia was replaced by methylamine as the nitrogen source.  相似文献   

16.
J P Coleman  J J Perry 《Microbios》1984,39(155):49-63
Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.  相似文献   

17.
A bacterium capable of degrading propoxur (2-isopropoxyphenyl-N-methylcarbamate) was isolated from soil by enrichment cultures and was identified as a Pseudomonas species. The organism grew on propoxur at 2 g/l as sole source of carbon and nitrogen, and accumulated 2-isopropoxyphenol as metabolite in the culture medium. The cell free extract of Pseudomonas sp. grown on propoxur contained the activity of propoxur hydrolase. The results suggest that the organism degraded propoxur by hydrolysis to yield 2-isopropoxyphenol and methylamine, which was further utilized as carbon source.  相似文献   

18.
A psychrotrophic pseudomonad isolated from iced fish oxidized alanine at temperatures close to 0 degrees C and grew over the range 0 degrees C-35 degrees C. The rate of oxidation of alanine, measured manometrically, by cells grown at 2 degrees C was lower than that of cells grown at 22 degrees C. However, the consumption of oxygen after heat treatment at 35 degrees for 35 min was reduced considerably by 2 degrees C grown cells. Alanine oxidase activity was tested in an extract from cells grown at 2 degrees C and 22 degrees C with alanine as the sole carbon, nitrogen, and energy source. Cells grown at 2 degrees C produced an alanine oxidase with a temperature optimum of 35 degrees C and pH optimum of 8, which lost about 80% activity by heat treatment at 40 degrees C for 30 min. There was no change in activity after dialysis at pH 7, 8, or 9. Extracts from cells grown at 22 degrees C contained an alanine oxidase system with an optimum temperature of 45 degrees C, a pH optimum above 8, and only about 30% reduction of activity after heat treatment. This enzyme activity was concentrated in the 0.5 M elution fraction from a Sephadex column, and dialysis reduced the activity at pH 7 and 8. Mesophilic enzyme synthesis apparently started around a growth temperature of 10 degrees C. The crude alanine oxidase systems of Pseudomonas aeruginosa derived from cells grown at 13 degrees C and 37 degrees C had a common optimum temperature of 45 degrees C. These data suggest that one mechanism of psychrophilic growth by psychrotrophic bacteria may be the induction of enzymes with low optimum temperatures in response to low temperature conditions.  相似文献   

19.
Maltose uptake and its regulation in Bacillus subtilis   总被引:4,自引:0,他引:4  
Extracts prepared from cultures of Bacillus subtilis, grown on maltose as the sole carbon source, lacked maltose phosphotransferase system activity. There was, however, evidence for a maltose phosphorylase activity, and such extracts also possessed both glucokinase and glucose phosphotransferase system activities. Maltose was accumulated by whole cells of B. subtilis by an energy-dependent mechanism. This uptake was sensitive to the effects of uncouplers, suggesting a role for the proton-motive force in maltose transport. Accumulation of maltose was inhibited in the presence of glucose, and there was no accumulation of maltose by a strain carrying the ptsI6 null-mutation. A strain carrying the temperature-sensitive ptsI1 mutation accumulated maltose normally at 37 degrees C but, in contrast to the wild-type, was devoid of maltose transport activity at 47 degrees C. The results indicate a role for the phosphotransferase system in the regulation of maltose transport activity in this organism.  相似文献   

20.
1. When Candida albicans cells were preincubated with proline or grown in the presence of proline as the sole nitrogen source they exhibited a rapid increase in the influx of proline (the inducible transport system). 2. The induction appeared to be specific for proline and also demonstrated in other Candida species. 3. Both the inducible and constitutive proline uptake systems exhibited similar characteristic features. 4. The nature of the inducer for proline uptake in C. albicans appeared to be free proline. 5. The development of the inducible proline transport system was dependent on concomitant synthesis of RNA and protein and the induction was not affected by glucose or any other carbon sources used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号