共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation of microbial polyester poly(3-hydroxybutyrate) in environmental samples and in culture 总被引:1,自引:0,他引:1
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)]. 相似文献
2.
Degradation of poly(3-hydroxybutyrate) by soil streptomycetes 总被引:1,自引:0,他引:1
The ability of 64 soil streptomycetes to degrade poly(3-hydroxybutyrate) [P(3HB)] was evaluated on Pridham and Lyons mineral salts agar medium overlayered with the same medium containing 0.2% P(3HB). The streptomycete isolates were grown on this overlayered medium and the degradation was detected by the formation of clear zone surrounding the growth. Four potent degrader isolates identified as species of Streptomyces were selected. Degradation of P(3HB) by these isolates was studied for a period of 8 days. The rate of degradation increased with increase in concentration of P(3HB) in the medium while it decreased with the supplementation of readily utili- zable carbon sources like glucose, fructose and sucrose. All four isolates also degraded the copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB–co–3HV)] in solid medium but to a lesser extent. However, the isolates were equally efficient in degrading P(3HB) in liquid medium. 相似文献
3.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis. 相似文献
4.
Production of poly(3-hydroxybutyrate) [P(3HB)] from wheyby fed-batch culture of recombinant Escherichia coli CGSC 4401 harboring a plasmid containing the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes was examined in a 30 l fermenter supplying air only. With lactose below 2 g l–1, cells grew to 12 g dry cell l–1 with 9% (w/w) P(3HB) content. Accumulation of P(3HB) could be triggered by increasing lactose to 20 g l–1. By employing this strategy, 51 g dry cell l–1 was obtained with a 70% (w/w) P(3HB) content after 26 h. The productivity was 1.35 g P(3HB) l–1 h–1. The same fermentation strategy was used in a 300 l fermenter, and 30 g dry cell l–1 with 67% (w/w) P(3HB) content was obtained in 20 h. 相似文献
5.
An efficient process for the preparation of poly(3-hydroxybutyrate) (PHB) microspheres with a narrow size distribution was developed. PHB was produced by a fed-batch culture of Ralstonia eutropha using fructose syrup as the sole carbon source. After autoclaving the bacteria, PHB granules, which accumulated in the cells, were isolated by a detergent/hypochlorite treatment and then spray-dried to obtain the microspheres. The diameters of the PHB microspheres ranged from 0.6 to 1.1 m and the weight-average molecular weights were approximately 50000 with polydispersity indexes of 5.0. The microspheres had a porous internal structure with an average porosity value of 72% and efficiently blocked UV light shorter than 220 nm. When isosorbide dinitrate was used as a model drug, the optimal drug loading concentration of the microspheres for controllable retardation was 3% (w/w). Almost 80% of the loaded drug (3%, w/w) was released within 12 h with typical sustained drug release behaviors. 相似文献
6.
A strong fibrin-specific fibrinolytic enzyme was purified from the cell-free spent culture broth of a thermophilic organism, Streptomyces megasporus SD5. The strain could produce 150 mg crude protein per litre of spent broth, with a specific activity of 80 IU (Plough units) per milligram, within 18 h of incubation at 55 °C in glucose yeast/extract/peptone (GYP) medium, pH 8.0. For production of the enzyme, the strain could utilize different carbon and nitrogen sources with a C:N ratio of ∼ 1:2. The enzyme was stable at a broad range of pH ranging from 5 to 9, and highly thermostable with 50% activity after storage at 60 °C for 6 months. The enzyme belonged to the serine endopeptidase group. In vitro clot lysis revealed that the enzyme was active at 37 °C. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
Optimal growth and PHB accumulation in Bacillus megaterium occurred with 5% (w/v) date syrup or beet molasses supplemented with NH4Cl. When date syrup and beet molasses were used alone without an additional nitrogen source, a cell density of about 3gl–1 with a PHB content of the cells of 50% (w/w) was achieved. NH4NO3 followed by ammonium acetate and then NH4Cl supported cell growth up to 4.8gl–1, whereas PHB accumulation was increased with NH4Cl followed by ammonium acetate, NH4NO3 and then (NH4)2SO4 to a PHB content of nearly 42% (w/w). Cultivation of B.megaterium at 30l scale gave a PHB content of 25% (w/w) of the cells and a cell density of 3.4gl–1 after 14h growth. 相似文献
8.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1. 相似文献
9.
Production of poly(3-hydroxybutyrate) by solid-state fermentation with <Emphasis Type="Italic">Ralstonia eutropha</Emphasis> 总被引:1,自引:0,他引:1
The use of solid-state fermentation is examined as a low-cost technology for the production of poly(hydroxyalkanoates) (PHAs) by Ralstonia eutropha. Two agroindustrial residues (babassu and soy cake) were evaluated as culture media. The maximum poly(hydroxybutyrate) (PHB) yield was 1.2 mg g–1 medium on soy cake in 36 h, and 0.7 mg g–1 medium on babassu cake in 84 h. Addition of 2.5% (w/w) sugar cane molasses to soy cake increased PHB production to 4.9 mg g–1 medium in 60 h. Under these conditions, the PHB content of the dry biomass was 39% (w/w). The present results indicate that solid-state fermentation could be a promising alternative for producing biodegradable polymers at low cost.Revisions requested 31 August 2004; Revisions received 12 October 2004 相似文献
10.
Poly(3-hydroxybutyrate) (PHB) granule formation in Azotobacter vinelandii was investigated by laser scanning fluorescence microscopy after staining the cells with Nilered and Baclight. Cells that had been starved for a carbon source for > or =3 days were almost free of PHB granules. Formation of visible PHB granules started within 1-2 h after transfer of the cells to a medium permissive for PHB accumulation. Fluorescent PHB granules at the early stages of formation were exclusively found in the cell periphery of the 2-3 mum ovoid-shaped cells. After 3 h of PHB accumulation or later, PHB granules were also found to be detached from the cell periphery. Our results indicate that PHB granule formation apparently begins at the inner site of the cytoplasmic membrane. This finding is different from previous assumptions that PHB granule formation occurs randomly in the cytoplasm of PHB-accumulating bacteria. 相似文献
11.
Recombinant Escherichia coli (ATCC:PTA-1579) harbouring poly(3-hydroxybutyrate) (PHB) synthesising genes from Streptomyces aureofaciens NRRL 2209 accumulates PHB. Effects of different carbon and nitrogen sources on PHB accumulation by recombinant E. coli were studied. Among the carbon sources used glycerol, glucose, palm oil and ethanol supported PHB accumulation. No PHB accumulated in recombinant cells when sucrose or molasses were used as carbon source. Yeast extract, peptone, a combination of yeast extract and peptone, and corn steep liquor were used as nitrogen sources. The maximum PHB accumulation (60% of cell dry weight) was measured after 48 h of cell growth at 37 degrees C in a medium with glycerol as the sole carbon source, and yeast extract and peptone as nitrogen sources. Scanning electron microscopy of the PHB granules isolated from recombinant E. coli revealed these to be spherical in shape with a diameter ranging from 0.11 to 0.35 pm with the mean value of 0.23 +/- 0.06 pm. 相似文献
12.
The effect of different amino acid supplements to the basal medium on poly(3-hydroxybutyrate) (PHB) accumulation by recombinant pha
Sa
+
Escherichia coli (ATCC: PTA-1579) harbouring the poly(3-hydroxybutyrate)-synthesizing genes from Streptomyces aureofaciens NRRL 2209 was studied. With the exception of glycine and valine, all other amino acid supplements brought about enhancement of PHB accumulation. In particular, cysteine, isoleucine or methionine supplementation increased PHB accumulation by 60, 45 and 61% respectively by the recombinant E. coli as compared with PHB accumulation by this organism in the basal medium. The effect of co-ordinated addition of assorted combinations of these three amino acids on PHB accumulation was studied using a 23 factorial design. The three-factor interaction analyses revealed that the effect of the three amino acids on PHB accumulation by the recombinant E. coli was in the order of cysteine > methionine > isoleucine. The defined medium supplemented with cysteine, methionine and isoleucine at the concentration of 150 mgl–1 each and glycerol as the carbon source was the optimum medium that resulted in the accumulation of about 52% PHB of cell dry weight. 相似文献
13.
A novel PHB depolymerase from a thermophilic Streptomyces sp. MG was purified to homogeneity by hydrophobic interaction chromatography and gel filtration. The molecular mass of the
purified enzyme was 43 kDa as determined by size exclusion chromatography and 41 kDa by SDS-PAGE. The optimum pH and temperature
were 8.5 and 60 °C respectively. The enzyme was stable at 50 °C and from pH 6.5–8.5. The enzyme hydrolyzed not only bacterial
polyesters, i.e. poly(3-hydroxybutyric acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), but also synthetic, aliphatic
polyesters such as polypropiolactone, poly(ethylene adipate) and poly(ethylene succinate).
Revisions requested 9 November 2005; Revisions received 12 December 2005 相似文献
14.
Ci Su-Qin Chen Shan Dong-Bo Liu Hong-Mei Xia 《World journal of microbiology & biotechnology》2006,22(7):729-735
Summary
Penicillium sp. DS9713a-01 was obtained by ultraviolet (u.v.) light mutagenesis from the Penicillium sp. DS9713a which can degrade poly (3-hydroxybutyrate) (PHB). The enzymatic activity of DS9713a-01 was 97% higher than that
of the wild-type strain. The DS9713a-01 mutant could completely degrade PHB films in 5 days; however, the wild-type strain
achieved only 61% at the same time. The extracellular PHB depolymerase was purified from the culture medium containing PHB
as the sole carbon source by filtration, ammonium sulfate precipitation and chromatography on Sepharose CL-6B. The molecular
weight of the PHB depolymerase was about 15.1kDa determined by SDS-polyacrylamide gel electrophoresis. The optimum activity
of the PHB depolymerase was observed at pH 8.6 and 50 °C. The enzyme was stable at temperatures below 37 °C and in the pH
range from 8.0 to 9.2. The activity of PHB depolymerase could be activated or inhibited by some metal ions. The apparent K
m
value was 0.164 mg ml−1. Mass spectrometric analysis of the water-soluble products after enzymatic degradation revealed that the primary product
was the monomer, 3-hydroxybutyric acid. 相似文献
15.
A simple and effective method for the recovery poly(3-hydroxybutyrate) [P(3HB)] directly from high cell density culture broth with no pretreatment steps has been developed. This method consists of direct addition of sodium dodecyl sulfate (SDS) to the culture broth, shaking, heat treatment, and washing steps. When the SDS/biomass ratio was higher than 0.4, the purity of recovered P(3HB) was over 95% for various cell concentrations of 50–300 g dry cell l–1, with the highest value of 97%. The recovery of P(3HB) was over 90% regardless of cell concentration and SDS dosage (SDS/biomass ratios, 0.1–0.7). One g SDS digests 0.72 g non-P(3HB) cell materials. The reduction in molecular weight, due to degradation of P(3HB) by SDS, was negligible. 相似文献
16.
Abstract Intracellular degradation of poly(3-hydroxybutyrate) (PHB) in bacteria is not yet clear. The properties of the autodigestion of native PHB granules from Zooglea ramigera I-16-M were examined. The release of d (−)-3-hydroxybutyrate was observed only at pH values higher than about 8.5 and at relatively high ionic strength (optimal concentration 200 mM NaCl). Triton X-100 and diisopropylfluorophosphate inhibited this reaction. Addition of the supernatant fraction of Z. ramigera did not increase the release of d (−)-3-hydroxybutyrate from the native PHB granules. On the other hand, using the protease-treated PHB granules from Alcaligenes eutrophus as a substrate, PHB depolymerase activity was detected in the supernatant fraction of Z. ramigera cells. The soluble PHB depolymerase showed similar properties to the enzyme in the PHB granules. Since PHB depolymerase activity was found in fractions containing d (−)-3-hydroxybutyrate oligomer hydrolase activity, which were separated by DEAE-Toyopearl or by Sephacryl S-100, it is possible that the intracellular PHB depolymerase is identical to the oligomer hydrolase which has been purified already. 相似文献
17.
Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction 总被引:2,自引:0,他引:2
The structure of native poly(3-hydroxybutyrate) (PHB) granules of Alcaligenes eutrophus was characterized in wet cells or wet granules by analysis of X-ray diffraction. The PHB granules in intact cells were completely amorphous, but became crystalline after treatment with alkali or sodium hypochlorite. The native PHB granules were isolated from the cells by treatment with enzymes and sonic oscillation. The isolated PHB granules remained amorphous in suspension. The PHB granules were crystallized by various treatments with aqueous acetone, alkaline solution (of either NaOH or sodium hypochlorite), and lipase in an aqueous environment. These results suggest that crystallization of PHB molecules is started by the removal of a lipid component from native granules by various treatments. 相似文献
18.
A marine Streptomyces sp. SNG9 was characterized by its ability to utilize poly(3-hydroxybutyrate) (PHB) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate P (3HB-co-HV). The bacterium grew efficiently in a simple mineral liquid medium enriched with 0.1% poly(3-hydroxybutyrate) powder as the sole carbon source. Cells excreted PHB depolymerase and degraded the polymer particles to complete clarity in 4 days. The degradation activity was detectable by the formation of a clear zone around the colony (petri plates) or a clear depth under the colony (test tubes). The expression of PHB depolymerase was repressed by the presence of simple soluble carbon sources. Bacterial degradation of the naturally occurring sheets of poly(3-hydroxybutyrate) and its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was observed by scanning electron microscopy (SEM). Morphological alterations of the polymers sheets were evidence for bacterial hydrolysis. 相似文献
19.
Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l–1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l–1 is 1.6 times that obtained with 40 g l–1. When glucose was in the range of 9 to 40 g l–1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l–1. 相似文献
20.
Production of poly-D(-)-3-hydroxybutyrate and poly-D(-)-3-hydroxyvalerate by strains ofAlcaligenes latus 总被引:2,自引:0,他引:2
Alcaligenes latus strains can accumulate poly-D(-)-3-hydroxybutyrate (PHB) up to about 85% of cell dry weight. The abilities to store poly-D(-)-3-hydroxyvalerate (PHV) of three strains ofA. latus were investigated. With Na-propionate as PHV precursor, strainA. latusDSM 1122 had better PHV accumulation ability than strainsA. latusDSM 1123 and 1124. StrainA. latus DSM 1123 could store PHV when Na-valerate but not Na-propionate served as the PHV precursor. PHB and PHV accumulation byA. latus DSM 1124 rapidly increased when propionic acid and acetic acid were together added to the fermentor. This increase was not obtained in the culture shaker flask and fermentor growing the same strain when Na-propionate alone served as a PHV precursor. 相似文献