首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correspondence analysis of functional groups in a riparian landscape   总被引:1,自引:0,他引:1  
Lyon  Jonathan  Sagers  Cynthia L. 《Plant Ecology》2003,164(2):171-183
We used multivariate analysis and ordinations to characterize thecomposition and distribution of woody vegetation within the Ozark NationalScenic Riverways (ONSR), Missouri, USA. The objectives of the study were to: 1)evaluate patterns of woody species distributions along existing environmentalgradients; 2) determine if different classes of woody plants (i.e., dominantoverstory trees, all trees, understory trees, and shrubs) responded similarlytothe same suite of environmental variables; and 3) determine if discreteecotonaland/or ecoclinal vegetation patterns were present across the landscape. Woodyvegetation was sampled from 94 plots along 35 transects positioned at rightangles to the river channel. Sample plots were analyzed with DetrendedCorrespondence Analysis (DCA), Canonical Correspondence Analysis (CCA), andTWINSPAN. Overall, woody vegetation was correlated with several environmentalgradients, including elevation of the plot above the river, soil pH, soilmoisture, and soil particle size. Responses to secondary gradients differedamong the four classes of plants analyzed, however. CCA biplots of understorytrees indicated that patterns of those species were strongly correlated withslope through the plot and sand content of soil. CCA biplots of shrubs showedthat CCA axes were most strongly correlated with soil organic matter content,soil moisture, and silt content. Further, there was limited evidence fordiscrete assemblages of woody species, with the exception of streamsidevegetation. Instead, mixing of woody species was observed across a broadtransition zone. Because there is little correspondence between vegetationlayers, our results demonstrate including plant classes other than a subset ofcanopy dominant trees can provide additional resolution in characterizingvegetation responses along complex environmental gradients.  相似文献   

2.
张忠华  胡刚  祝介东  倪健 《植物生态学报》2011,35(10):1038-1049
以贵州省茂兰国家级自然保护区喀斯特峰丛坡面中原生性常绿落叶阔叶混交林为研究对象, 以建立的100 m × 100 m样地的群落学调查数据和基于网格取样的土壤养分数据为基础, 采用半方差函数、Kriging空间插值和典范对应分析(canonical correspondence analysis, CCA)等方法分析了喀斯特森林土壤养分的空间异质性特征及其对树种分布的影响。结果表明: 喀斯特峰丛坡面土壤养分的变异系数为10%-80%, 变异程度中等。各土壤养分指标均具有良好的空间自相关性, 其中全磷(TP)、全钾(TK)、全镁(TMg)和pH值呈强烈的空间自相关, 而有机质(OM)、全钙(TCa)、速效磷(AP)和速效钾(AK)为中等程度的空间自相关; TCa的空间变异尺度最小, OM、TP和AK的空间变异尺度较大。土壤TK、TP、TCa、TMg、AP和pH值等随着海拔高度的增加和岩石裸露率的降低而逐渐减少, OM则随着海拔高度的增加而趋于增加, 这表明喀斯特地形因子是造成土壤养分空间变异的重要因素。CCA分析表明, 土壤养分的空间变异性显著影响到群落中树种的组成与空间分布, 其中TK、TMg、pH值、TCa和OM的影响最为明显, 体现了不同植物在土壤资源利用上的生态位分化, 这有助于喀斯特森林群落物种多样性与稳定性的维持。  相似文献   

3.
Structure of herbaceous plant assemblages in a forested riparian landscape   总被引:2,自引:0,他引:2  
We assessed patterns of herbaceous and woody species richness, plant-environment interactions, and correspondence between the herb and tree layer in a riparian landscape (the Ozark National Scenic Riverways, Missouri, USA). A total of 269 herb and 70 tree species were identified on 94 sample plots. Gradient analysis revealed that environmental variables and vegetation were influenced by a strong elevation gradient. However, high variability in environmental variables (pH, elevation, slope, sand, clay, organic matter) indicated a high level of substrate heterogeneity across the riparian landscape. We were unable to predict the composition of the herb understory from the canopy trees with any detailed accuracy and no clear characterization of herb species assemblages was found using cluster analysis or ecological land type (ELT) classifications. Canonical correspondence analysis (CCA) results for both tree and herb plots showed that elevation (height above river) and pH were the dominant environmental gradients influencing vegetation patterns on the first CCA axis while soil particle size exhibited the strongest correlation with the second CCA axis. Secondary gradients of importance included slope, soil container capacity, and organic matter. No significant linear or quadratic correlation was found between elevation and herb or woody species richness. Environmental variables alone or in combination, were weak predictors of herb and woody species richness, despite the patterns observed in the gradient analysis and the correlations observed in the CCA results. Ecotonal analysis showed that the herb layer exhibited a high species replacement rate at the lower elevations most susceptible to flooding (0–3 m). Above the flooding zone, there was more or less continuous species replacement, suggesting the presence of a gradual ecotone/ecocline. The tree layer exhibited much stronger discontinuities than the herb layer in the lower elevations along the height gradient (0–10 m). Recognizing the limitations of classification techniques for riparian herb assemblages and the importance of scale and heterogeneity in vegetation layers is especially important in light of mandates to preserve, protect, and manage for plant diversity.  相似文献   

4.
The invasion of native habitats by exotic, or alien, plant species has received considerable attention recently from policy, research, and practical conservation management perspectives. However, a new hypothesis for species dynamics in Britain suggests that a small number of aggressive native plant species (termed ‘thugs’) may have an equal, or greater, impact on native species and habitats than exotic species. Here, we examine this hypothesis using multivariate techniques with field-layer cover data collected during a country-wide survey of British woodlands. Multivariate analysis of these data identified a north-south gradient on the first axis, and that 20 of the 25 National Vegetation Classification woodland types were sampled within the study. The most abundant field-layer species included three of the proposed native ‘thugs’, i.e. Rubus fruticosus, Pteridium aquilinum and Hedera helix in addition to the native woodland indicator species Mercurialis perennis. Variation partitioning was used to compare the relative importance of native field-layer ‘thug’ species with invading alien shrub and tree species relative to other environmental drivers. The variation in the field-layer data-set explained by the three native ‘thug’ species was significant, but they explained a relatively small proportion of the variation relative to other environmental variables (climate, soil, management factors etc.). They did, however, explain almost four times as much variation as the three alien species that were significantly correlated with field-layer species composition (Acer pseudoplatanus, Impatiens glandulifera, Rhododendron ponticum). The results of this analysis suggest that the field-layer of British woodlands is impacted as much by native ‘thug’ species, as it is from ‘aliens’. Concern about the impact of these native ‘thug’ species has been reported previously, but their impact has not previously been compared to the impact of invading aliens. It is hoped that this analysis will do two things, first to act as a sound baseline for assessing any changing balance that should occur in the future, and second, to prompt both ecologists and conservationists to develop woodland management policies based on sound science.  相似文献   

5.
长白山北坡木本植物分布与环境关系的典范对应分析   总被引:16,自引:1,他引:15       下载免费PDF全文
 在长白山北坡海拔700~2 600 m的坡面上,海拔每上升100 m设立一个样点,共计20个样点。调查每个样点中木本植物的生态重要值,并计测样点内包括气候、土壤、林冠郁闭度在内的13个环境因子。应用CANOCO3.12软件对获得的数据进行了典范对应分析(CCA),应用CANODRAW3.0作出了种类  相似文献   

6.
Variations of tree species composition and community structure and their relationship with environmental variables are described for five sites of the Atlantic rain forest in Picinguaba, southeastern Brazil, distributed along an elevation gradient sampled by plots located at the altitudes of 2, 100, 300, 600 and 1000 m a.s.l. Sampled trees with DBH ≥ 5 cm were identified to species level and their diameter and height were measured. Environmental variables obtained for each plot included 11 topsoil variables and altitude. The residuals of all linear models were tested for spatial structure and multivariate analyses were performed to seek for relationships between the overall species’ abundances and selected environmental variables. Although both forest physiognomy and species’ abundances did change with altitude, this was clearly sharp only from the coastal plain (2 m) to 100 m, and from 600 m to the summit (1000 m). The three mid-slope sites (100, 300 and 600 m) were rather undifferentiated, though they were richer in species and had taller canopy trees. The altitude and the edaphic variables silt, clay, pH and total exchangeable bases (TEB) presented significant correlations with the variations in species’ abundances, while only pH and TEB were significantly correlated with species richness. The present study demonstrates for the first time that the composition and structure of Atlantic Forest can change accompanying the soil and altitude variations over short distances.  相似文献   

7.
The mountain wetlands studied represent a unique habitat on the southern slopes of the Alborz mountain range, the second largest range in Iran. In comparison with other parts of this range the western section is ecologically and botanically unknown. Floristic and vegetation variation were assessed using diverse environmental variables along a broad altitudinal span (350 m to 3200 m a.s.l.). Using both statistical and ordination analyses floristic variation was assessed on three defined altitudinal belts which were delimited based on Alborz macro-climatic boundaries. The distribution of individual wetland plant species, of phytogeographic elements and of life-forms all differ among altitudinal belts. This result is also shown in both direct and indirect analyses of ordinations. The proportion of geophytes significantly increases with altitude and geophytes are very well represented in the upper altitudinal belt. The number of species of a narrow phytogeographical distribution (e.g. endemics) increases with altitude, soil pH and EC declined with altitude. The first axis of DCA ordination with passively projected environmental variables indicates that, organic matter and concentration of Fe2+ are increased toward higher altitude. The second axis of ordination is related to both soil texture and slope inclination. The distribution of species in the CCA species plot is also close to the distribution of those in the DCA ordination. This study indicates that altitude and slope together with other dependent environmental variables (pH, EC, Ca2+ and soil texture) are the main ecological factors controlling species distribution across the Western Alborz wetland sites.  相似文献   

8.
Floods are frequently associated with disturbance in structuring riverine forests and they lead to environmental heterogeneity over space and time. We evaluated the distribution of tree species, ecological groups, species richness and diversity from the point bar to the slope of a riverside forest in southern Brazil (Lat. 30°01′S, Long. 52°47′W) to analyze the effects of flooding on soil properties and forest structure. A plot of 50 × 200 m divided in five contiguous transects of 10 × 200 m parallel to the river was installed, where we measured all the individual trees with pbh ≥ 15 cm. A detailed topographical and soil survey was carried out across the plot and indicated significant differences in organic matter and most mineral nutrients through the topographical gradient. The 1,229 surveyed individuals belonged to 72 species and 35 families. We used Partial CCA and Species Indicator Analysis to observe the spatial distribution of species. Both analyses showed that species distribution was strongly related to the flooding gradient, soil properties and also by space and pure spatial structuring of species and environmental variables (spatial autocorrelation), although a large part of variation remains unexplained. The ecological groups of forest stratification, plant dispersal and requirements for germination indicated slight differences among frequently, occasional and non-flooded transects. Species richness and diversity were higher at intermediate elevations and were associated to the increased spatial–temporal environmental heterogeneity. Across the plot, the direct influence of flooding on tree species distribution created a vegetation zonation that is determined by predicted ecological traits.  相似文献   

9.
A total of 23 ostracod taxa were found in 48 of 90 different water bodies (wetlands, springs, lakes, creeks, etc.) located at moderate to high elevation (530–1,095 m) in Diyarbakır province. The ecological tolerances and optimum values for environmental variables of 15 species were analyzed. Accordingly, maximum numbers of species were found between 700 and 800 m. Ostracod species and sampling sites along with seven environmental variables were ordinated with canonical correspondence analysis (CCA). The first axis of CCA explained 72% of the relationship between species and environmental variables. Of these, water temperature, redox potential and altitude were the most influential (P < 0.05) factors for species. Based on habitat similarities, an unweighted pair group mean average dendrogram divided species into four clustering groups. Among the species, Potamocypris arcuata, Candona neglecta and Psychrodromus fontinalis had the highest optimum estimates for altitude, whereas P. arcuata, Herpetocypris brevicaudata and P. fontinalis exhibited the highest tolerances to altitude. While most species revealed unique tolerances and optimum values for different ecological variables, species with cosmopolitan characteristics had wider ranges of ecological tolerances and distribution amid the variety of habitats along elevational gradients.  相似文献   

10.
长白山北坡草本植物分布与环境关系的典范对应分析   总被引:25,自引:3,他引:22  
郝占庆  郭水良 《生态学报》2003,23(10):2000-2008
在长白山北坡海拔700~2600m的坡面上,海拔每上升100m设立一块样地,共计20个样地,计测样地中草本层植物的生态重要值和包括气候、土壤、林冠郁闭度等在内的13个环境因子,对获得的数据进行典范对应分析,作出了种类、样地分布与环境因子关系的二维排序图,排序图直观地反映了主要草本植物分布与环境因子间的关系。排序图中环境因子与前两个排序轴的相关系数大小表明,海拔高度作为诸多环境因子的综合反映,是影响长白山北坡草本植物分布的主导因素,除此之外,其它环境因子如林冠郁闭度、土壤有机质及有效N、P、K等因素,也对草本植物的分布有较大的影响。高山冻原与2000m以下森林群落内的草本植物明显不同,反映出二种不同类型植被间草本植物组成格局间质的差异。  相似文献   

11.
Theoretical and empirical evidence exists for a positive relationship between environmental heterogeneity and species diversity. Alpine plant communities can exhibit exceptional diversity at a fine scale, which niche theory would suggest is the result of fine scale spatial heterogeneity of the environment. To test if species diversity of alpine plants is driven by environmental heterogeneity, we sampled vascular plant species composition, microtopography, and ground cover within 1?m2 plots with and without solifluction forms in Glacier National Park, MT. We analyzed the relationship between microtopographic heterogeneity and species richness at the plot and sub-plot scale with linear and quantile regression, respectively. Species richness does not differ between the plots varying in cover type. Species richness is negatively related to the fractal dimension (D) of the ground surface and non-vegetated ground cover within 1?m2 plots. At a finer scale, the standard deviation of elevation and slope appear to impose a limit on species richness such that more variable sub-plots have lower species richness. Contrary to our expectations, microtopographic heterogeneity does not promote the diversity of alpine plants. The negative relationship between topographic heterogeneity and species richness is contrary to the theoretical prediction that environmental heterogeneity generally results in greater species diversity. It is possible that microtopographic variability represents a measure of soil disturbance, which would be expected to have a negative effect on species diversity in alpine tundra due to its low productivity.  相似文献   

12.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

13.
Identification of the primary factors that influence the ecological distribution of species groups is important to managers of lowland‐mountain forests in northern Iran. The aim of this study was to identify main ecological species groups, describe the site conditions associated with these species groups and the relationships between environmental factors and the distribution of ecological species groups using multi‐variate analysis (Detrended correspondence analysis (DCA) and Canonical correspondence analysis (CCA)). For this purpose, 50 relevés (400 m2 each) were sampled using the Braun‐Blanquet method. Vegetation was classified into three ecological species groups using a modified two‐way indicator species analysis (TWINSPAN). In each relevé, environmental factors (topographic and soil variables) were measured and analysed using one‐way ANOVA and Pearson r statistics. Further, species diversity indices were determined for the identified ecological species groups. Our results show that the environmental factors, e.g. elevation, slope, slope aspect, soil texture, pH and organic matter, were the most important factors explaining the distribution of the three ecological species groups in the study area. The diversity of the ecological species groups decreased with elevation. The results provide an ecological basis for forest management and for developing strategies for forest conservation in the study area.  相似文献   

14.
气孔是植物与外界环境进行水分和气体交换的主要通道,调节植物碳同化和水分散失的平衡关系,在一定程度上反映植物对外界环境变化的适应。沿太白山北坡1100—2300 m海拔,测定4种栎属树种的气孔性状,分析气孔性状沿海拔的变化规律和其对环境因子的响应。结果表明:(1)气孔密度与气孔长度间的负相关在4个树种间均显著存在(P0.05);除栓皮栎(Quercus variabilis)外,气孔密度与潜在气孔导度指数的正相关关系均达显著水平;而气孔宽度与气孔长度之间只在栓皮栎和锐齿栎(Q. aliena var. acuteserrata)达到显著水平。(2)栓皮栎和槲栎(Q. aliena)的气孔长度和宽度随海拔升高而下降,气孔密度、潜在气孔导度指数增加,辽东栎(Q. wutaishansea)变化形式则相反;锐齿栎气孔宽度减小,其余性状沿海拔呈单峰变化,在约1600 m处气孔长度达到最小值,气孔密度和潜在气孔导度指数达到最大值。(3)与土壤因子相比,气孔性状主要受气候因素的影响。潜在气孔导度指数与大气温度、空气湿度成极显著正相关(P0.01),与降水量显著负相关(P0.05)。其中,空气相对湿度是影响潜在气孔导度指数的主要因素,能够解释气孔变异的22.9%。本研究结果对于深入认识秦岭太白山地区栎属树种对环境变化的响应和适应提供理论证据。  相似文献   

15.
Aims The aims of this study were to compare the fungal communities developing on cotton strips at three different altitudes on the Tibetan Plateau and to assess the environmental variables influencing them.Methods Cotton strips that had been buried in soil for a year were sampled at three sites at different altitudes (4500, 4950 and 5200 m) located on a southeast-facing slope on the Nyainqentanglha Mountains near Damxung. The fungi on the cotton strips were isolated using a modified washing method. The decomposition abilities and colony growth properties of the major species cultured in pure-culture conditions were investigated and compared. Canonical correspondence analysis (CCA) was used to evaluate the relationships between fungal community composition and environmental variables (altitude, soil depth, soil water content [SWC], plant root mass and gravel content).Important findings A total of 24 species were isolated from the cotton strips, and 12 species occurred frequently and were regarded as major species. The number of fungal species was lower at the 4950-m altitude site than at the other two sites, indicating that not only altitude but also other factors affected the number of species present. All of the major species were able to decompose the cotton strips. In the CCA ordination, automatic forward selection revealed that altitude, SWC and plant root mass significantly affected fungal species composition. Our results suggest that species number and the composition of cellulolytic fungal communities are highly correlated with environmental variables as well as altitude in the alpine meadow on the Tibetan Plateau.  相似文献   

16.
We studied the influence of environmental factors relating to climate, soil and vegetation cover on total species richness, species richness of different life-forms and species composition of plant communities occurring in Quercus ilex woodlands, across a 450-km long transect in Northern Algeria constituting a gradient of aridity and human use. We sampled vegetation and collected environmental data in 81 10 m × 10 m plots in five zones representing the largest Q. ilex woodlands throughout the study area, analysing them within an a priori hypothesis framework with the use of Path Analysis. Changes in plant diversity were mainly influenced by environmental factors related to precipitation and temperature regimes, as well as by total plant cover. In particular, changes in species composition were determined by factors associated with the temperature regime through their influence on both woody and annual herbaceous plant richness, and by factors related to the precipitation regime through their influence on perennial herbaceous plant richness, likely due to the differential tolerances of these functional groups to cold and water stress. Our results emphasize the importance of differences in environmental adaptability of the most important life-forms with regard to explaining compositional change (beta diversity) along aridity gradients, and the mediator role of total plant cover in relation to the effects of soil conditions on plant diversity.  相似文献   

17.
This study aimed to address which factors, other than topography, contribute to the floristic variation of forested slopes. The natural forest studied is located in the Sudoeste Alentejano e Costa Vicentina Nature Park (southwestern Portugal). We sampled topographic, edaphic, floristic and community structure variables along three bottom–top hillside transects. Multivariate analyses of soil variables (by PCA), and of woody species composition and floristic–environmental relationships (by CCA and pCCA) were performed. Environmental–floristic trends strongly associated with the elevation gradient were identified. At lower altitudes, the lowest species richness, the highest soil fertility, and the tallest and most dense (least available light) canopy occurred. The spatial variation in woody species composition and abundance was closely associated with Zn availability in the soil and litter groundcover, but these varibles had significant spatial structure in the studied forest. The non-spatially structured species variance was better predicted by soil NO3 and NH4+. The spatial variation of species data not shared with environmental variables was also calculated. We suggest that the influence of topographic gradient on the variation of edaphic variables and on the distribution and abundance of woody species was mediated by overstorey tree composition. Locally dominant tree species, in particular Quercus faginea and Quercus suber, may function as ecosystem engineers promoting environmental changes (i.e., Zn availability in soil, litter accumulation and light availability) that influence overall floristic variation.  相似文献   

18.
Weeds are unwanted plant species growing in ordinary environment. In nature there are a total of 8000 weed species out of which 250 are important for agriculture world. The present study was carried out on weed species composition and distribution pattern with special reference to edaphic factor and farming practices in maize crop of District Mardan during the months of August and September, 2014. Quadrates methods were used to assess weed species distribution in relation to edaphic factor and farming practices. Phytosociological attributes such as frequency, relative frequency, density, relative density and Importance Values were measured by placing 9 quadrates (1 × 1 m2) randomly in each field. Initial results showed that the study area has 29 diverse weed species belonging to 27 genera and 15 families distributed in 585 quadrats. Presence and absence data sheet of 29 weed species and 65 fields were analyzed through PC-ORD version 5. Cluster and Two Way Cluster Analyses initiated four different weed communities with significant indicator species and with respect to underlying environmental variables using data attribute plots. Canonical Correspondence Analyses (CCA) of CANOCO software version 4.5 was used to assess the environmental gradients of weed species. It is concluded that among all the edaphic factors the strongest variables were higher concentration of potassium, organic matter and sandy nature of soil. CCA plots of both weed species and sampled fields based on questionnaire data concluded the farming practices such as application of fertilizers, irrigation and chemical spray were the main factors in determination of weed communities.  相似文献   

19.
Phytosociological attributes of plant species and associated environmental factors were measured in order to identify the environmental gradients of major plant communities in the Naran Valley, Himalayas. The valley occupies a distinctive geographical setting on the edge of the Western Himalaya near the Hindukush range and supports a high biodiversity; pastoralism is the main land use. There have been no previous quantitative ecological studies in this region. This study was undertaken to (i) analyze and describe vegetation using classification and ordination techniques, (ii) identify environmental gradients responsible for plant community distributions and (iii) assess the anthropogenic pressures on the vegetation and identify priorities for conservation. Phytosociological characteristics of species were measured alongside environmental variables. A total of 198 species from 68 families were quantified at 144 stations along 24 transects across an elevation range of 2450–4100 m. Correspondence Analysis techniques i.e., Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) were used to determine vegetation–environment relationships. Results show vegetation changes with altitude from moist-cool temperate communities characterized by woody species, to more dry-cold subalpine and alpine herbaceous communities. Plant species diversity is optimal at middle altitudes (2800–3400 m); at lower altitudes (2400–2800 m) it is reduced by anthropogenic impacts and at higher altitudes (3400–4100 m) by shallow soils and high summer grazing pressure. A large number of plant species of conservation concern were identified in the study and an assessment made of the main threats to their survival.  相似文献   

20.
对太白山巴山冷杉(Abies fargesii)-糙皮桦(Betula utilis)混交林及其环境因子进行了调查,采用CCA排序法分析了环境因子与物种分布的关系,偏CCA评估了各个环境因子的重要程度,GAM拟合了物种丰富度对各个环境因子的响应。结果显示,土壤pH、海拔、岩石盖度对物种分布有显著影响(P<0.05),其影响强度为:海拔>岩石盖度>pH,其它环境因子(土壤有机质、全N、全P含量和坡度)影响不显著(P>0.05)。GAM拟合结果表明,土壤pH、岩石盖度、海拔和全N含量是影响物种丰富度的主要环境因子(P<0.01),物种丰富度随pH值升高而增加,随岩石盖度和海拔升高而减小,而随全N含量的变化较为复杂;土壤有机质、全P含量和坡度对物种丰富度没有显著影响(P>0.05)。巴山冷杉-糙皮桦混交林物种分布及多样性是由海拔、岩石盖度和土壤pH值为主的多种环境因子综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号