首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems.  相似文献   

2.
Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks.  相似文献   

3.
Kozlov S  Grishin E 《Peptides》2012,33(2):240-244
Polypeptide toxins are the main constituents of natural venoms. Considerable progress in the study of these molecules has resulted in the determination of a large number of structurally related sequences. To classify newly discovered molecules, a rational nomenclature for naming peptide toxins was developed, which takes into account toxin biological activity, the species name, and structural peculiarities of the polypeptide. Herein, we suggest modifications to this nomenclature for cysteine-rich polypeptide toxins from sea anemones and describe 11 novel polypeptide structures deduced after common database revision.  相似文献   

4.
Biology is advanced by producing structural models of biological systems, such as protein complexes. Some systems are recalcitrant to traditional structure determination methods. In such cases, it may still be possible to produce useful models by integrative structure determination that depends on simultaneous use of multiple types of data. An ensemble of models that are sufficiently consistent with the data is produced by a structural sampling method guided by a data‐dependent scoring function. The variation in the ensemble of models quantified the uncertainty of the structure, generally resulting from the uncertainty in the input information and actual structural heterogeneity in the samples used to produce the data. Here, we describe how to generate, assess, and interpret ensembles of integrative structural models using our open source Integrative Modeling Platform program ( https://integrativemodeling.org ).  相似文献   

5.
The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby sequencing power can be interpreted to understand nucleic acid proximity, nucleic acid conformation, or nucleic acid‐protein interactions. Utilizing such technologies in this way has the promise to provide novel structural insights into the mechanisms that control normal cellular physiology and provide insight into how structure could be perturbed in disease.  相似文献   

6.
In this communication we present the detailed disulfide structure of IgG2 molecules. The consensus structural model of human IgGs represents the hinge region positioned as a flexible linker connecting structurally isolated Fc and Fab domains. IgG2 molecules are organized differently from that model and exhibit multiple structural isoforms composed of (heavy chain-light chain-hinge) covalent complexes. We describe the precise connection of all the disulfide bridges and show that the IgG2 C H1 and C-terminal C L cysteine residues are either linked to each other or to the two upper hinge cysteine residues specific to the IgG2 subclass. A defined arrangement of these disulfide bridges is unique to each isoform. Mutation of a single cysteine residue in the hinge region eliminates these natural complexes. These results show that IgG2 structure is significantly different from the conventionally accepted immunoglobulin structural model and may help to explain some of the unique biological activity attributed only to this subclass.  相似文献   

7.
Oxysterols are oxygenated derivatives of cholesterol that form a class of potent regulatory molecules with diverse biological activity. Given the implications of oxysterols in several physiological/pathophysiological pathways of human diseases, it is important to identify how their presence affects the biophysical properties of cell membranes. In this article we first describe the structure, formation, and biological functions of oxysterols, and previous work on the effect of these molecules on the structure and phase behavior of lipid membranes. We then present results of our X-ray diffraction experiments on aligned multilayers of dipalmitoylphosphatidylcholine (DPPC) membranes containing ring-substituted oxysterols. The effect of these molecules on the phase behavior of DPPC membranes is found to be very similar to that of cholesterol. All the oxysterols studied induce a modulated phase in DPPC membranes, similar to that reported in DPPC–cholesterol membranes. However, some differences are observed in the ability of these molecules to suppress the main transition of the lipid and to induce chain ordering, which might be related to differences in their orientation in the bilayer.  相似文献   

8.
During the last few years, Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR) has become one of the most powerful methods to determine the structure of biological materials and in particular of components of biological membranes, like proteins which cannot be studied by X-ray crystallography and NMR. Indeed, ATR-FTIR method requires little amount of material, gives valuable information about the secondary structure, orientation and tertiary structure changes in peptides and proteins. Moreover, this technique can be used in the presence of lipids and hence provides an excellent tool to study membrane proteins in their natural environment. In this review, we describe how structural information about the catalytic cycle of membrane proteins can be gained by combining ATR-FTIR spectroscopy and mutagenesis. In particular, results obtained about the structure and function of the nucleotide binding domains (NBD) of P-glycoprotein (Pgp), a multidrug transporter involved in cancer cells resistance to chemotherapy, are described.  相似文献   

9.
Ribonucleic acid (RNA) molecules play important roles in a variety of biological processes. To properly function, RNA molecules usually have to fold to specific structures, and therefore understanding RNA structure is vital in comprehending how RNA functions. One approach to understanding and predicting biomolecular structure is to use knowledge-based potentials built from experimentally determined structures. These types of potentials have been shown to be effective for predicting both protein and RNA structures, but their utility is limited by their significantly rugged nature. This ruggedness (and hence the potential's usefulness) depends heavily on the choice of bin width to sort structural information (e.g. distances) but the appropriate bin width is not known a priori. To circumvent the binning problem, we compared knowledge-based potentials built from inter-atomic distances in RNA structures using different mixture models (Kernel Density Estimation, Expectation Minimization and Dirichlet Process). We show that the smooth knowledge-based potential built from Dirichlet process is successful in selecting native-like RNA models from different sets of structural decoys with comparable efficacy to a potential developed by spline-fitting - a commonly taken approach - to binned distance histograms. The less rugged nature of our potential suggests its applicability in diverse types of structural modeling.  相似文献   

10.
We describe a completely automated and objective method for defining topological equivalents in macromolecules. The method is based on well established techniques for identifying topologically and topographically equivalent atoms in small molecules and has been used in structural alignment of proteins and RNA molecules, and to extract fragments of molecules (protein secondary structures and RNA and DNA double helices) from structural databases consistent with some specified template structure.  相似文献   

11.
Lipids constitute one of the most enigmatic family of biological molecules. Although the importance of lipids as basic units of compartmental structure and energy storage is well-acknowledged, deciphering the biosynthesis and precise roles of specific lipid species has been challenging. To better understand the structure and function of these biomolecules, there is a burgeoning interest in developing strategies to produce noncanonical lipids in a controlled manner. This review covers recent advances in the area of in situ generation of synthetic lipids. Specifically, we report several approaches that constitute a powerful toolbox for achieving noncanonical lipid synthesis. We describe how these methodologies enable the direct construction of synthetic lipids, helping to address fundamental questions related to the cell biology of lipid biosynthesis, trafficking, and signaling. We envision that highlighting the current advances in artificial lipid synthesis will pave the way for broader interest into this emerging class of biomimetic molecules.  相似文献   

12.
RNA folding: pseudoknots, loops and bulges   总被引:5,自引:0,他引:5  
The three-dimensional structures adopted by RNA molecules are crucial to their biological functions. The nucleotides of an RNA molecule interact to form characteristic secondary-structure motifs. Tertiary interactions orient these secondary-structure elements with respect to each other to form the functional RNA. Here we describe the basic structural elements with special emphasis on a novel tertiary motif, the pseudoknot.  相似文献   

13.
The mammalian nucleus has a complex structural organization that dynamically interacts with the genome. Chromatin is organized into discrete domains by association with distinct nuclear compartments enriched in structural and regulatory proteins. Growing evidence suggests that gene activity is modulated by interactions with these sub-nuclear compartments. Therefore, analyzing how nuclear architecture controls genome activity will be necessary to fully understand complex biological processes such as development and disease. In this article we describe a molecular methodology involving inducible tethering that can be used to position genes at the inner nuclear membrane (INM)-lamina compartment. The consequences of such directed re-positioning on gene activity or other DNA transactions can then be analyzed. This approach can be generalized and extended to position genes or chromosomal domains within other nuclear compartments thereby greatly facilitating the analysis of nuclear structure and its impact on genome activity.  相似文献   

14.
With rapidly increasing availability of three-dimensional structures, one major challenge for the post-genome era is to infer the functions of biological molecules based on their structural similarity. While quantitative studies of structural similarity between the same type of biological molecules (e.g., protein vs. protein) have been carried out intensively, the comparable study of structural similarity between different types of biological molecules (e.g., protein vs. RNA) remains unexplored. Here we have developed a new bioinformatics approach to quantitatively study the structural similarity between two different types of biopolymers--proteins and RNA--based on the spatial distribution of conserved elements. We applied it to two previously proposed tRNA-protein mimicry pairs whose functional relatedness between two molecules has been recently determined experimentally. Our method detected the biologically meaningful signals, which are consistent with experimental evidence.  相似文献   

15.
The biologically relevant structures of proteins and nucleic acids and their complexes are dynamic. They include a combination of regions ranging from rigid structural segments to structural switches to regions that are almost always disordered, which interact with each other in various ways. Comparing conformational changes and variation in contacts between different conformational states is essential to understand the biological functions of proteins, nucleic acids, and their complexes. Here, we describe a new computational tool, 1D2DSimScore, for comparing contacts and contact interfaces in all kinds of macromolecules and macromolecular complexes, including proteins, nucleic acids, and other molecules. 1D2DSimScore can be used to compare structural features of macromolecular models between alternative structures obtained in a particular experiment or to score various predictions against a defined “ideal” reference structure. Comparisons at the level of contacts are particularly useful for flexible molecules, for which comparisons in 3D that require rigid-body superpositions are difficult, and in biological systems where the formation of specific inter-residue contacts is more relevant for the biological function than the maintenance of a specific global 3D structure. Similarity/dissimilarity scores calculated by 1D2DSimScore can be used to complement scores describing 3D structural similarity measures calculated by the existing tools.  相似文献   

16.
The function of a complex system such as a smooth muscle cell is the result of the active interaction among molecules and molecular aggregates. Emergent macroscopic manifestations of these molecular interactions, such as the length-force relationship and its associated length adaptation, are well documented, but the molecular constituents and organization that give rise to these emergent muscle behaviors remain largely unknown. In this minireview, we describe emergent properties of airway smooth muscle that seem to have originated from inherent fragility of the cellular structures, which has been increasingly recognized as a unique and important smooth muscle attribute. We also describe molecular interactions (based on direct and indirect evidence) that may confer malleability on fragile structural elements that in turn may allow the muscle to adapt to large and frequent changes in cell dimensions. Understanding how smooth muscle works may hinge on how well we can relate molecular events to its emergent macroscopic functions.  相似文献   

17.
众所周知, 鞘脂是生物膜结构的重要组成成分, 随着鞘脂在动物和酵母中的深入研究发现, 鞘脂及其代谢产物是一类很重要的活性分子, 它们参与调节细胞的生长、分化、衰老和细胞程序性死亡等许多重要的信号转导过程。鞘脂在植物中的研究最近几年才开始, 植物鞘脂的功能还不十分清楚。最近的研究发现, 鞘脂及其代谢产物在植物中也起着很重要的信号分子作用。该文详细总结了鞘脂在植物中的结构、代谢途径和主要生物学功能, 并结合实验室的工作对植物鞘脂的功能研究进行了展望。  相似文献   

18.
众所周知,鞘脂是生物膜结构的重要组成成分,随着鞘脂在动物和酵母中的深入研究发现,鞘脂及其代谢产物是一类很重要的活性分子,它们参与调节细胞的生长、分化、衰老和细胞程序性死亡等许多重要的信号转导过程。鞘脂在植物中的研究最近几年才开始,植物鞘脂的功能还不十分清楚。最近的研究发现,鞘脂及其代谢产物在植物中也起着很重要的信号分子作用。该文详细总结了鞘脂在植物中的结构、代谢途径和主要生物学功能,并结合实验室的工作对植物鞘脂的功能研究进行了展望。  相似文献   

19.
Yu L  Sun C  Song D  Shen J  Xu N  Gunasekera A  Hajduk PJ  Olejniczak ET 《Biochemistry》2005,44(48):15834-15841
Ion channels play critical roles in signaling processes and are attractive targets for treating various diseases. Here we describe an NMR-based strategy for structural analyses of potassium channel-ligand complexes using KcsA (residues 1-132, with six mutations to impart toxin binding and to mimic the eukaryotic hERG channel). Using this approach, we determined the solution structure of KcsA in complex with the high-affinity peptide antagonist charybdotoxin. The structural data reveal how charybdotoxin binds to the closed form of KcsA and makes specific contacts with the extracellular surface of the ion channel, resulting in pore blockage. This represents the first direct structural information about an ion channel complexed to a peptide antagonist and provides an experimental framework for understanding and interpreting earlier mutational analyses. The strategy presented here overcomes many of the limitations of conventional NMR approaches to helical membrane protein structure determination and can be applied in the study of the binding of druglike molecules to this important class of proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号