首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MIPS Rice (Oryza sativa) database (MOsDB; http://mips.gsf.de/proj/rice) provides a comprehensive data collection dedicated to the genome information of rice. Rice (O. sativa L.) is one of the most important food crops for over half the world's population and serves as a major model system in cereal genome research. MOsDB integrates data from two publicly available rice genomic sequences, O. sativa L. ssp. indica and O. sativa L. ssp. japonica. Besides regularly updated rice genome sequence information, MOsDB provides an integrated resource for associated analysis data, e.g. internal and external annotation information as well as a complex characterization of all annotated rice genes. The MOsDB web interface supports various search options and allows browsing the database content. MOsDB is continuously expanding to include an increasing range of data type and the growing amount of information on the rice genome.  相似文献   

2.
Decoding the rice genome   总被引:4,自引:0,他引:4  
Rice cultivation is one of the most important agricultural activities on earth, with nearly 90% of it being produced in Asia. It belongs to the family of crops that includes wheat, maize and barley, and it supplies more than 50% of calories consumed by the world population. Its immense economic value and a relatively small genome size makes it a focal point for scientific investigations, so much so that four whole genome sequence drafts with varying qualities have been generated by both public and privately funded ventures. The availability of a complete and high-quality map-based sequence has provided the opportunity to study genome organization and evolution. Most importantly, the order and identity of 37,544 genes of rice have been unraveled. The sequence provides the required ingredients for functional genomics and molecular breeding programs aimed at unraveling intricate cellular processes and improving rice productivity.  相似文献   

3.
Splicing and alternative splicing in rice and humans   总被引:1,自引:0,他引:1  
Rice is a monocot gramineous crop, and one of the most important staple foods. Rice is considered a model species for most gramineous crops. Extensive research on rice has provided critical guidance for other crops, such as maize and wheat. In recent years, climate change and exacerbated soil degradation have resulted in a variety of abiotic stresses, such as greenhouse effects, lower temperatures, drought, floods, soil salinization and heavy metal pollution. As such, there is an extremely high demand for additional research, in order to address these negative factors. Studies have shown that the alternative splicing of many genes in rice is affected by stress conditions, suggesting that manipulation of the alternative splicing of specific genes may be an effective approach for rice to adapt to abiotic stress. With the advancement of microarrays, and more recently, next generation sequencing technology, several studies have shown that more than half of the genes in the rice genome undergo alternative splicing. This mini-review summarizes the latest progress in the research of splicing and alternative splicing in rice, compared to splicing in humans. Furthermore, we discuss how additional studies may change the landscape of investigation of rice functional genomics and genetically improved rice. [BMB Reports 2013; 46(9): 439-447]  相似文献   

4.
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T‐DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene‐rich regions, resulting in direct gene knockout or activation of genes within 20–30 kb up‐ and downstream of the T‐DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T‐DNA‐tagged rice mutant population. We also discuss important features of T‐DNA activation‐ and knockout‐tagging and promoter‐trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high‐throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.  相似文献   

5.
An integrated physical and genetic map of the rice genome   总被引:12,自引:0,他引:12       下载免费PDF全文
Rice was chosen as a model organism for genome sequencing because of its economic importance, small genome size, and syntenic relationship with other cereal species. We have constructed a bacterial artificial chromosome fingerprint–based physical map of the rice genome to facilitate the whole-genome sequencing of rice. Most of the rice genome (~90.6%) was anchored genetically by overgo hybridization, DNA gel blot hybridization, and in silico anchoring. Genome sequencing data also were integrated into the rice physical map. Comparison of the genetic and physical maps reveals that recombination is suppressed severely in centromeric regions as well as on the short arms of chromosomes 4 and 10. This integrated high-resolution physical map of the rice genome will greatly facilitate whole-genome sequencing by helping to identify a minimum tiling path of clones to sequence. Furthermore, the physical map will aid map-based cloning of agronomically important genes and will provide an important tool for the comparative analysis of grass genomes.  相似文献   

6.
Zhao Y  Zhou DX 《遗传学报》2012,39(7):307-315
Epigenomes including genome-wide histone modification and DNA methylation profiles are important for genome activity and for defining gene expression patterns of plant development and responses to various environmental conditions.Rice is the most important crop plant and serves as a model for cereal genomics.Rice epigenomic landscape is emerging and the function of chromatin modification regulators in gene expression,transposon repression and plant development is being characterized.Epigenomic variation that gives rise to stable or transgenerational heritable epialleles related to variation of important agronomical traits or stress responses is being characterized in rice.Implication of epigenomic variation in rice heterosis is being exploited.  相似文献   

7.
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.  相似文献   

8.
Rice is known to be one of the most important crops for human consumption. As the model cereal crop, large-scale sequencing of rice genome must play quite important roles both in theoretical research and practical application in rice breeding, which announces the opening of another new way to resolve the world food crisis. At present, the emphasis of rice genome research has been transferred from structure genomics to functional analysis. The discovery of new genes and annotation of gene function was believed to be an important issue in functional genomics research. In this article, the sequencing and functional research of the rice genome were reviewed. These results may provide some useful clues for rice genetic engineering and breeding practices.  相似文献   

9.
水稻基因组测序及基因功能的鉴定   总被引:6,自引:0,他引:6  
刘庆坡  薛庆中 《遗传学报》2006,33(8):669-677
水稻是重要的粮食作物。作为单子叶模式植物,水稻基因组的大规模测序具有巨大的理论价值和现实意义。目前已获得了籼稻“93—11”和粳稻“日本晴”高质量的基因组数据,这为在基因组水平上深入研究其生长、发育、抗病和高产等的遗传机理提供了便利,从而为进一步解决世界粮食危机提供了新的突破口和契机。随着水稻基因组计划的顺利结束,其研究重心也已由建立高分辨率的遗传、物理和转录图谱为主的结构基因组学转向基因功能的研究。结构基因组学研究获得的大量序列数据为揭示和开发功能基因开辟了广阔的前景。目前,利用图位克隆和电子克隆等方法已成功分离了多个水稻抗病、抗虫、抗逆境、抗倒伏、高产、优质等重要农艺性状相关的基因,对培育水稻新品种,促进农业的可持续发展意义重大。据估计,水稻至少拥有3.7万个非转座因子相关的蛋白编码基因。因此,完成全基因组序列测定后,重要基因功能的鉴定已成为当前基因组学研究的主要目标。反向遗传学、大规模基因功能表达谱分析和蛋白质组研究等策略已在研究水稻重要基因的功能方面发挥了重要作用。文章综述了水稻基因组测序及基因功能研究的现状,并就新基因发掘和基因功能注释的方法作了评述,期待为水稻遗传工程和育种实践提供参考。  相似文献   

10.
《Genomics》2021,113(3):1396-1406
Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.  相似文献   

11.
Chen  Rongzhi  Deng  Yiwen  Ding  Yanglin  Guo  Jingxin  Qiu  Jie  Wang  Bing  Wang  Changsheng  Xie  Yongyao  Zhang  Zhihua  Chen  Jiaxin  Chen  Letian  Chu  Chengcai  He  Guangcun  He  Zuhua  Huang  Xuehui  Xing  Yongzhong  Yang  Shuhua  Xie  Daoxin  Liu  Yaoguang  Li  Jiayang 《中国科学:生命科学英文版》2022,65(1):33-92
Science China Life Sciences - Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved...  相似文献   

12.
转基因抗虫水稻对生物多样性的影响   总被引:1,自引:0,他引:1  
Zhang L  Zhu Z 《遗传》2011,33(5):414-421
水稻是我国最重要的粮食作物,然而虫害造成的产量损失每年高达一千万吨以上。研究表明,转基因抗虫水稻对二化螟、三化螟和稻纵卷叶螟等水稻主要鳞翅目害虫具有高抗性,可以大幅度减少化学杀虫剂的使用。在不使用农药的情况下,在抗虫转基因水稻田中的害虫密度大幅度减少的同时,可以显著地增加中性昆虫及捕食性天敌数量和种类,显示出稻田生态系统和生物多样性的向良性发展的趋势。转基因水稻花粉向非转基因水稻品种的基因飘流实验表明,随着栽种距离的增大而显著减小,到间隔6.2 m时基因飘流频率已低于0.01%。转基因抗虫水稻的应用,对于保障我国粮食安全,保持农业可持续发展,保护生物多样性和生态环境尤其是在大幅度减少农药使用量方面具有重要意义。文章综述了转基因抗虫水稻研制进展及其对生物多样性的影响,并对农作物害虫防治的未来研究方向和发展趋势进行展望,以期为转基因抗虫水稻更好的应用提供借鉴。  相似文献   

13.
Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4-6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (> 10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at >50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macroand micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.  相似文献   

14.
Identifying useful gene(s) is one of the most important objectives of plant geneticists. Various strategies can be used, which are based on the characteristics of plant reproduction and available technology. Rice is the first model crop whose whole genome sequence has been reported. In addition, information on the whole genome sequences of two important rice subspecies (japonica and indica rice) is also available. Rice is a self-pollinating crop and methods of artificial crossing are relatively easy to perform; such methods enable the production of numerous seeds for genetic analyses. Based on these features, a map-based cloning (i.e., positional cloning) strategy has been successfully applied over the last decade to identify rice genes. Recently, advanced next-generation sequencing (NGS) technology was used to ascertain the genome sequences of individual plants, opening up a new strategy for gene identification. This strategy has been used successfully to identify the genes responsible for certain qualitative traits in rice. However, to identify the gene(s) involved in a quantitative trait, a map-based cloning strategy is still required after quantitative trait loci analysis using NGS technology. In this review, we discuss both map-based cloning (which is still the primary strategy used to identify rice genes) and NGS-based strategies.  相似文献   

15.
Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and non-coding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have ho-mologs in 108 rice scaffolds, and almost all of them (99.41 %) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special U14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants,  相似文献   

16.
Rice is a leading grain crop and the staple food for over half of the world population. Rice is also an ideal species for genetic and biological studies of cereal crops and other monocotyledonous plants because of its small genome and well developed genetic system. To facilitate rice genome analysis leading to physical mapping, the identification of molecular markers closely linked to economic traits, and map-based cloning, we have constructed two rice bacterial artificial chromosome (BAC) libraries from the parents of a permanent mapping population (Lemont and Teqing) consisting of 400 F9 recombinant inbred lines (RILs). Lemont (japonica) and Teqing (indica) represent the two major genomes of cultivated rice, both are leading commercial varieties and widely used germplasm in rice breeding programs. The Lemont library contains 7296 clones with an average insert size of 150 kb, which represents 2.6 rice haploid genome equivalents. The Teqing library contains 14208 clones with an average insert size of 130 kb, which represents 4.4. rice haploid genome equivalents. Three single-copy DNA probes were used to screen the libraries and at least two overlapping BAC clones were isolated with each probe from each library, ranging from 45 to 260 kb in insert size. Hybridization of BAC clones with chloroplast DNA probes and fluorescent in situ hybridization using BAC DNA as probes demonstrated that both libraries contain very few clones of chloroplast DNA origin and are likely free of chimeric clones. These data indicate that both BAC libraries should be suitable for map-based cloning of rice genes and physical mapping of the rice genome.  相似文献   

17.
Genetic modification of plant architecture and variety improvement in rice   总被引:1,自引:0,他引:1  
Yang XC  Hwa CM 《Heredity》2008,101(5):396-404
The structure of the aerial part of a plant, referred to as plant architecture, is subject to strict genetic control, and grain production in cereal crops is governed by an array of agronomic traits. Rice is one of the most important cereal crops and is also a model plant for molecular biological research. Recently, significant progress has been made in isolating and collecting rice mutants that exhibit altered plant architecture. In this article we summarize the recent progress in understanding the basic patterning mechanisms involved in the regulation of tillering (branching) pattern, stem structure and leaf arrangement in rice plants. We discuss the relationship between the genetic modification of plant architecture and the improvement of pivotal agronomic traits in rice.  相似文献   

18.
Rice has many characteristics of a model plant. The recent completion of the draft of the rice genome represents an important advance in our knowledge of plant biology and also has an important contribution to the understanding of general genomic evolution. Besides the rice genome finishing map, the next urgent step for rice researchers is to annotate the genes and noncoding functional sequences. The recent work shows that noncoding RNAs (ncRNAs) play significant roles in biological systems. We have explored all the known small RNAs (a kind of ncRNA) within rice genome and other six species sequences, including Arabidopsis, maize, yeast, worm, mouse and pig. As a result we find 160 out of 552 small RNAs (sRNAs) in database have homologs in 108 rice scaffolds, and almost all of them (99.41%) locate in intron regions of rice by gene predication. 19 sRNAs only appear in rice. More importantly, we find two special LJ14 sRNAs: one is located in a set of sRNA ZMU14SNR9(s) which only appears in three plants, 86% sequences of them can be compared as the same sequence in rice, Arabidopsis and maize; the other conserved sRNA XLHS7CU14 has a segment which appears in almost all these species from plants to animals. All these results indicate that sRNA do not have evident borderline between plants and animals.  相似文献   

19.
Rice is one of the most important staple crops and efficient iron (Fe) adsorption during growth not only improves rice yield, but also enriches this essential micronutrient in rice grains to address Fe deficiency in humans. In this article, we review updates on research into the molecular mechanisms regulating Fe uptake from soil and its transport from roots to shoots to seeds in rice plants. Understanding the regulation and expression of genes involved in Fe homeostasis will benefit the development of variants with enhanced Fe utilization to improve rice output and quality.  相似文献   

20.
Vegetation History and Archaeobotany - Rice is one of the most important subsidence crops, however evidence of the origin and domestication of rice cultivation is still scarce in Indonesia. This...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号