首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human bone marrow (BM) B cells capable of spontaneous and high rate Ig secretion for 14 days in vitro have been described previously. We have shown recently that Ig secretion by these BM cells depends on stromal adherent BM cell-derived factors identified as IL-6 and fibronectin. Our report shows that the endogenous generation of IL-1 beta and TNF-alpha in serum-containing cultures of BM mononuclear cells (BMMC) is also involved in the control of Ig-secreting cells, because their blockade with specific antibodies markedly reduced Ig production. Further experiments revealed that IL-1 beta and TNF-alpha acted by regulating IL-6 production, as can be deduced from the following findings: 1) the inhibition of Ig secretion caused by either anti-IL-1 beta or anti-TNF-alpha antibodies could be reversed by exogenous IL-6; 2) the addition of either of these antibodies inhibited endogenous IL-6 production in BMMC cultures; 3) IL-1 beta plus TNF-alpha, but neither one alone, restored complete IL-6 and Ig production by BMMC in serum-free cultures. Moreover, adherent, but not nonadherent, BM cells were responsible for endogenous IL-1 beta and TNF-alpha secretion. Finally, IL-1 beta plus TNF-alpha induced the production of IL-6, but not of Ig, by adherent BM cells. Neither IL-6 nor Ig production was induced by adding this cytokine combination to nonadherent BM cell cultures, despite the fact that this fraction contained all the Ig-secreting cells. However, the addition of IL-6 restored Ig secretion in this cell fraction. These results suggest that IL-1 beta and TNF-alpha produced by adherent BM cells synergistically induce early IL-6 generation, which, in turn, drives BM B cell producers into the high rate Ig-secreting state.  相似文献   

2.
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.  相似文献   

3.
Obese conditions increase the expression of adipocytokine monocyte chemoattractant protein-1 (MCP-1) in adipose tissue as well as MCP-1 plasma levels. To investigate the mechanism behind increased MCP-1, we used a model in which 3T3-L1 adipocytes were artificially hypertrophied by preloading with palmitate in vitro. As observed in obesity, under our model conditions, palmitate-preloaded cells showed significantly increased oxidative stress and increased MCP-1 expression relative to control cells. This increased MCP-1 expression was enhanced by adding exogenous tumor necrosis factor-alpha (TNF-alpha; 17.8-fold vs. control cells, P < 0.01) rather than interleukin-1beta (IL-1beta; 2.6-fold vs. control cells, P < 0.01). However, endogenous TNF-alpha and IL-1beta release was not affected in hypertrophied cells, suggesting that these endogenous cytokines do not mediate hypertrophy-induced increase in MCP-1. MCP-1 secretion from hypertrophied cells was significantly decreased by treatment with antioxidant N-acetyl-cysteine, JNK inhibitors SP600125 and JIP-1 peptide, and IkappaB phosphorylation inhibitors BAY 11-7085 and BMS-345541 (P < 0.01). MCP-1 secretion was not affected by peroxisome proliferator-activated receptor-gamma (PPARgamma) antagonists assayed. Adiponectin, another adipocytokine studied in parallel, also showed increased release in hypertrophy relative to control cells. But in contrast to MCP-1, adiponectin release was significantly suppressed by both exogenous TNF-alpha and IL-1beta as well as by PPARgamma antagonists bisphenol A diglycidyl ether and T0070907 (P < 0.01). JNK inhibitors and IkappaB phosphorylation inhibitors showed no significant effect on adiponectin. We conclude that adipocyte hypertrophy through palmitate loading causes oxidative stress, which in turn increases MCP-1 expression and secretion through JNK and IkappaB signaling. In contrast, the parallel increase in adiponectin expression appears to be related to the PPARgamma ligand properties of palmitate.  相似文献   

4.
The immunomodulatory potential of thymulin in the perinatal epithelium is not well characterized. In an in vitro model of fetal alveolar type II epithelial cells, we investigated the exhibition of an anti-inflammatory activity of this peptide hormone. Thymulin selectively ameliorated, in a dose-dependent manner, the endotoxin-induced release of IL-1 beta (IC(50) = 657 ng. ml(-1)), but showed no inhibitory effect on IL-6 and TNF-alpha. Zinc, an anti-inflammatory antioxidant, which is required for the biological activity of thymulin, reduced the secretion of IL-1 beta (IC(50) = 62 microM), TNF-alpha (IC(50) = 1000 microM), and, to a lesser extent, IL-6. This cation (100 microM) amplified the effect of thymulin on IL-1 beta and TNF-alpha (IC(50) < 0.1 ng. ml(-1)), but not on IL-6. Analysis of whether thymulin is up-regulating a counterpart anti-inflammatory signaling loop revealed the involvement of an IL-10-sensitive pathway. These results indicate that thymulin acts as a novel dual immunoregulator by enhancing an anti-inflammatory cytoprotective response and depressing an inflammatory signal, an effect synergistically amplified, in part, by cationic zinc.  相似文献   

5.
Previous observations have shown that tumour necrosis factor alpha (TNF-alpha) synthesis is increased in the uterus of diabetic rats and that the epithelial layer lining the uterine lumen is the major site of TNF-alpha over-production. In the present study, TNF-alpha secretion was found to be stimulated by high D-glucose levels in primary cultures of mouse uterine luminal cells but not in cultures of the mouse uterine epithelial WEG-1 cell line. Experiments were performed to investigate the possibility that non-epithelial cells may mediate the influence of high D-glucose on TNF-alpha production by uterine epithelial cells. Immunocytochemical analysis revealed the reproducible presence of a small proportion of macrophages in primary cultures. Macrophages of the RAW 264.7 cell line were found to secrete more interleukin (IL)-1beta (but not TNF-alpha) when cultured in high D-glucose. TNF-alpha production in WEG-1 cells was increased upon exposure to IL-1beta and both protein kinase-C and tyrosine kinase pathways appeared to be involved in TNF-alpha stimulation. Addition of IL-1 receptor antagonist to primary cultures partially abrogated the effect of high D-glucose. Since WEG-1 cells do not produce IL-1beta, the data lend support to the hypothesis that uterine epithelial cells synthesize high levels of TNF-alpha in response to hyperglycaemia via an increase in IL-1beta secretion by stromal macrophages.  相似文献   

6.
Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-alpha, IL-1beta, or LPS with or without 5-50 microg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-kappaB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-alpha and IL-1beta increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-alpha (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-kappaB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-alpha increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 microg/ml) and CIP (50 microg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-alpha-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-kappaB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-alpha and IL-1beta induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.  相似文献   

7.
Prior studies on the in vitro hepatic acute phase response have involved either hepatoma cell lines or conventional short-term cultures of primary hepatocytes. No data are available on the response of primary hepatocytes in stable long-term culture systems. In this study, the acute phase response of rat and human hepatocytes in a new long-term culture system was examined in response to interleukin-6 (IL-6), interleukin-1 beta (IL-1 beta), and tumor necrosis factor alpha (TNF-alpha). The cultured cells were sandwiched between two layers of collagen in a (double-gel) configuration which has been shown to preserve both hepatocyte function and morphology over prolonged periods of time. The stability of this culture configuration enabled us to investigate, for the first time, the temporal aspects of the response in addition to the effects of the mediators on protein secretion. Exposure of rat hepatocytes to IL-6 after culture for 16 days resulted in a 2-fold reduction of albumin secretion and a 15-fold increase in the secretion rates of fibrinogen and alpha 2-macroglobulin. In all instances, the peak response occurred at 48 h after IL-6 exposure, and all protein secretion rates returned to pretreatment values within 5 days posttreatment. Changes in the mRNA levels of these proteins in response to IL-6 corresponded with those changes seen with the secreted products, indicating pretranslational regulation. Administration of IL-1 beta to rat hepatocyte produced a similar decline of albumin secretion and a 5-fold increase of fibrinogen secretion, whereas alpha 2-macroglobulin secretion remained undisturbed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Hepatic synthesis of complement component C3 is regulated in part by inflammatory cytokines. Rat models are frequently employed to investigate pathogenic roles of complement and cytokines. However, cytokines obtained from species other than the rat were used in previous studies of cytokine regulation of C3 synthesis in rat hepatocytes or hepatoma cells. It is not known whether these prior reports predict hepatocellular responses evoked by rat cytokines. Therefore, H-35 rat hepatoma cells were employed to measure the effect of recombinant rat IL-1beta, IL-6, IFN-gamma, and TNF-alpha on C3 protein secretion and C3 mRNA levels quantified by ELISA and quantitative RT-PCR. Compared to untreated control cells, H-35 cells treated with IL-1beta, IL-6, and IFN-gamma increased C3 secretion approximately 10-, 4-, and 2-fold, respectively. TNF-alpha was toxic, precluding further analysis. IL-1beta and IL-6 demonstrated synergy with respect to the quantity and rate of increase of C3 mRNA measured and the magnitude of C3 protein secretion. Previous reports using non-rat cytokines did not consistently predict H-35 responses to rat cytokines. Consequently, we recommend the use of rat cytokines in rat models that include analysis of cytokine-mediated events.  相似文献   

9.
Intermittent psychological stress was induced in adult rats by 2 h/day of immobilization stress for 4 days, with or without blocking the function of IL-6 by using an anti-IL-6 antibody. Basal concentrations of serum corticosterone, IL-1beta, IL-6, and TNF-alpha were assessed 24 h after the last intervention, as were levels of glucocorticoid receptors (GR) and activities of glucocorticoid-inducible enzymes (tyrosine aminotransferase and glutamine synthetase) in muscle and liver. Whole blood cultures were used to assess both spontaneous and LPS-induced reactivity of peripheral blood mononuclear cells. Stress increased corticosterone concentration in a manner partially modulated by IL-6. Serum IL-1beta concentration was downregulated during stress when IL-6 was blocked (P < 0.01). LPS-induced IL-6 secretion by peripheral blood mononuclear cells in vitro correlated positively with serum IL-1beta concentration in antibody-treated groups, independently of stress (R = 0.70 in nonstressed and R = 0.78 in stressed rats; both P < 0.05), whereas serum corticosterone concentration correlated positively with LPS-induced secretion of IL-6 only in control rats (R = 0.66; P < 0.05). Reductions in liver GR levels indicated independent effects of stress (34.5%) and anti-IL-6 antibody (16.7%) and additive effects for both (62.5%). Similar results are reported for vastus muscle. Conversely, stress increased tyrosine aminotransferase and glutamine synthetase activities in muscle and liver with a significant (P < 0.05) effect of anti-IL-6 antibody only seen in stressed livers. In conclusion, IL-6 plays a role in maintaining circulating IL-1beta concentration after multiple exposures to stress, thus promoting a continued elevation of corticosterone release; in peripheral tissues, IL-6 antagonizes the effects of glucocorticoids, especially at the level of GR concentration.  相似文献   

10.
Sixteen experienced marathoners ran on treadmills for 3 h at approximately 70% maximal oxygen consumption (Vo(2 max)) on two occasions while receiving 1 l/h carbohydrate (CHO) or placebo (Pla) beverages. Blood and vastus lateralis muscle biopsy samples were collected before and after exercise. Plasma was analyzed for IL-6, IL-10, IL-1 receptor agonist (IL-1ra), IL-8, cortisol, glucose, and insulin. Muscle was analyzed for glycogen content and relative gene expression of 13 cytokines by using real-time quantitative RT-PCR. Plasma glucose and insulin were higher, and cortisol, IL-6, IL-10, and IL-1ra, but not IL-8, were significantly lower postexercise in CHO vs. Pla. Change in muscle glycogen content did not differ between CHO and Pla (P = 0.246). Muscle cytokine mRNA content was detected preexercise for seven cytokines in this order (highest to lowest): IL-15, TNF-alpha, IL-8, IL-1beta, IL-12p35, IL-6, and IFN-gamma. After subjects ran for 3 h, gene expression above prerun levels was measured for five of these cytokines: IL-1beta, IL-6, and IL-8 (large increases), and IL-10 and TNF-alpha (small increases). The increase in mRNA (fold difference from preexercise) was attenuated in CHO (15.9-fold) compared with Pla (35.2-fold) for IL-6 (P = 0.071) and IL-8 (CHO, 7.8-fold; Pla, 23.3-fold; P = 0.063). CHO compared with Pla beverage ingestion attenuates the increase in plasma IL-6, IL-10, and IL-1ra and gene expression for IL-6 and IL-8 in athletes running 3 h at 70% Vo(2 max) despite no differences in muscle glycogen content.  相似文献   

11.
12.
Primary airway epithelial cells grown in air-liquid interface differentiate into cultures that resemble native epithelium morphologically, express ion transport similar to those in vivo, and secrete cytokines in response to stimuli. Comparisons of cultures derived from normal and cystic fibrosis (CF) individuals are difficult to interpret due to genetic differences besides CFTR. The recently discovered CFTR inhibitor, CFTR(inh)-172, was used to create a CF model with its own control to test if loss of CFTR-Cl(-) conductance alone was sufficient to initiate the CF inflammatory response. Continuous inhibition of CFTR-Cl(-) conductance for 3-5 days resulted in significant increase in IL-8 secretion at basal (P = 0.006) and in response to 10(9) Pseudomonas (P = 0.0001), a fourfold decrease in Smad3 expression (P = 0.02), a threefold increase in RhoA expression, and increased NF-kappaB nuclear translocation upon TNF-alpha/IL-1beta stimulation (P < 0.000001). CFTR inhibition by CFTR(inh)-172 over this period does not increase epithelial sodium channel activity, so lack of Cl(-) conductance alone can mimic the inflammatory CF phenotype. CFTR(inh)-172 does not affect IL-8, IL-6, or granulocyte/macrophage colony-stimulating factor secretion in two CF phenotype immortalized cell lines: 9/HTEo(-) pCEP-R and 16HBE14o(-) AS, or IL-8 secretion in primary CF cells, and inhibitor withdrawal abolishes the increased response, so CFTR(inh)-172 effects on cytokines are not direct. Five-day treatment with CFTR(inh)-172 does not affect cells deleteriously as evidenced by lactate dehydrogenase, trypan blue, ciliary activity, electron micrograph histology, and inhibition reversibility. Our results support the hypothesis that lack of CFTR activity is responsible for the onset of the inflammatory cascade in the CF lung.  相似文献   

13.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

14.
Connor TJ  Kelly JP  McGee M  Leonard BE 《Life sciences》2000,67(13):1601-1612
In this study we examined the effects of methylenedioxymethamphetamine (MDMA) administration on responsiveness to an in vivo immune challenge with lipopolysaccharide (LPS; 100 microg/kg; i.p.). LPS produced an increase in circulating IL-1beta and TNF-alpha in control animals. MDMA (20 mg/kg; i.p.) significantly impaired LPS-induced IL-1beta and TNF-alpha secretion. The suppressive effect of MDMA on IL-1beta secretion was transient and returned to control levels within 3 hours of administration. In contrast, the MDMA-induced suppression of TNF-alpha secretion was evident for up to 12 hours following administration. In a second study we examined the effect of co-administration of MDMA (5, 10 and 20 mg/kg; i.p.) on LPS-induced IL-1beta and TNF-alpha secretion, and demonstrated that all three doses potently suppressed LPS-induced TNF-alpha secretion, but only MDMA 10 and 20 mg/kg suppressed LPS-induced IL-1beta secretion. In addition, serum MDMA concentrations displayed a dose-dependent increase, with the concentrations achieved following administration of 5 and 10 mg/kg being in the range reported in human MDMA abusers. In order to examine the possibility that the suppressive effect of MDMA on IL-1beta and TNF-alpha could be due to a direct effect of the drug on immune cells, the effect of in vitro exposure to MDMA on IL-1beta and TNF-alpha production in LPS-stimulated diluted whole blood was evaluated. However IL-1beta or TNF-alpha production were not altered by in vitro exposure to MDMA. In conclusion, these data demonstrate that acute MDMA administration impairs IL-1beta and TNF-alpha secretion following an in vivo LPS challenge, and that TNF-alpha is more sensitive to the suppressive effects of MDMA than is IL-1beta. However the suppressive effect of MDMA on IL-1beta and TNF-alpha could not be attributed to a direct effect on immune cells. The relevance of these findings to MDMA-induced immunomodulation is discussed.  相似文献   

15.
We studied the effect of transforming growth factor-beta 1 (TGF-beta 1) on colony formation of leukemic blast progenitors from ten acute myeloblastic leukemia (AML) patients stimulated with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), interleukin-6 (IL-6), or interleukin-1 beta (IL-1 beta). These CSFs and interleukins by themselves stimulated the proliferation of leukemic blast progenitors without adding TGF-beta 1. G-CSF, GM-CSF, and IL-3 stimulated blast colony formation in nine patients, IL-6 stimulated it in five, and IL-1 beta stimulated in four. TGF-beta 1 significantly reduced blast colony formation stimulated by G-CSF, GM-CSF, or IL-6 in all patients. In contrast, TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors from three cases, while in the other seven patients TGF-beta 1 reduced blast colony formation in the presence of IL-3. To study the mechanism by which TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors, we carried out the following experiments in the three patients in which it occurred. First, the media conditioned by leukemic cells in the presence of TGF-beta 1 stimulated the growth of leukemic blast progenitors, but such effect was completely abolished by anti-IL-1 beta antibody. Second, the addition of IL-1 beta in the culture significantly enhanced the growth of blast progenitors stimulated with IL-3. Third, leukemic cells of the two patients studied were revealed to secrete IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) constitutively; the production by leukemic cells of IL-1 beta and TNF-alpha was significantly promoted by TGF-beta 1. Furthermore, the growth enhancing effect of TGF-beta 1 in the presence of IL-3 was fully neutralized by anti-IL-1 beta antibody. These findings suggest that TGF-beta 1 stimulated the growth of blast progenitors through the production and secretion of IL-1 beta by leukemic cells.  相似文献   

16.
17.
18.
High circulating levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) are found in patients with hyperinsulinemia. Insulin stimulates release of IL-6 from adipocyte cultures, and it stimulates IL-6 gene expression in insulin-resistant, but not control, rat skeletal muscle. In addition, TNF-alpha may be involved in the pathogenesis of insulin resistance. Therefore, we studied the effect of insulin on IL-6 and TNF-alpha gene expression in human skeletal muscle and adipose tissue. Nine healthy young volunteers participated in the study. They underwent a 6-h hyperinsulinemic euglycemic clamp at a fixed insulin infusion rate, with blood glucose clamped at fasting level. Blood samples drawn at 0, 1, 2, 3, 4, 5, and 6 h were analyzed for IL-6 and TNF-alpha. Muscle and fat biopsies, obtained at 0, 2, 4, and 6 h, were analyzed for IL-6 and TNF-alpha mRNA with real-time PCR. IL-6 mRNA increased 11-, 3-, and 5-fold at 2, 4, and 6 h, respectively, in adipose tissue (ANOVA P = 0.027), whereas there was no significant effect of insulin on skeletal muscles. Plasma IL-6 increased during insulin stimulation. TNF-alpha mRNA increased 2.4-, 1.4-, and 2.2-fold in adipose tissue (ANOVA P = 0.001) and decreased 0.74-, 0.64-, and 0.68-fold in muscle tissue (ANOVA P = 0.04). Plasma levels of TNF-alpha were constant. In conclusion, the finding that insulin stimulates IL-6 and TNF-alpha gene expression in adipose tissue only and inhibits the TNF-alpha production in skeletal muscles suggests a differential regulation of muscle- and adipose tissue-derived IL-6 and TNF-alpha.  相似文献   

19.
Chemically synthesized mastoparan M, a tetradecapeptide toxin of venom (INLKAIAALAKKLL), was used in the experiments described. After addition of mastoparan M to cultures of mouse macrophages in vitro, tumour necrosis factor-alpha (TNF-alpha) and interleukin 1beta (IL-1beta) were detected in the culture fluids by 12 h and their highest accumulation was observed by 24 h. Mastoparan M induced increases in both TNF-alpha secretion and mRNA level at the same time. Nitrite levels, which reflect nitric oxide synthesis, were also found to increase in the macrophage cultures at 24 h after mastoparan M addition. In vivo studies showed that mastoparan M induced the formation and accumulation of TNF-alpha, IL-1beta and nitrite in the peritoneal exudates of mice much faster at 90 min, 120 min and 180 min after mastoparan M injection, respectively. Similarly, significant increases in myeloperoxidase activity, a marker for neutrophil and macrophage content, were observed in the peritoneal lavage cells after intraperitoneal injection of mastoparan M. However, induction of nitrite by mastoparan M was completely inhibited by simultaneous addition of antimouse TNF-alpha antibody to the macrophage cultures. These results suggest that modulation of both neutrophil and macrophage influx by mastoparan M may be conveyed through TNF-alpha and IL-1beta secretion accompanied by nitrite formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号