首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the N-terminal domains of corticotropin-releasing factor (CRF) and CRF-like peptides in receptor subtype selectivity, ligand affinity and biological potency was investigated. Therefore, human CRF(12-41), human URP(12-38) and antisauvagine-30 (aSvg) were N-terminally prolonged by consecutive addition of one or two amino acids. The peptides obtained were tested for their binding affinities to rat CRF1 and murine CRF(2beta) receptor, and their capability to stimulate cAMP-release by HEK cells producing either receptor.It was observed that human CRF N-terminally truncated by eight residues was bound with high affinity to CRF2 receptor (Ki=5.4nM), whereas affinity for CRF1 receptor was decreased (Ki=250 nM). A similar shift of affinity was found with sauvagine (Svg) analogs. Truncation of human URP analogs did not affect their preference for CRF(2beta) receptor, but reduced their affinity. Changes in affinity were positively correlated with changes in potency. These results indicated that CRF1 receptor was more stringent in its structural requirements for ligands to exhibit high affinity binding than CRF(2beta) receptor.  相似文献   

2.
Abstract: The interactions of two forms of porcine brain glutamate decarboxylase (β-GAD and γ-GAD) with the effector ATP were studied by affinity chromatography. A third form, γk-GAD, was only slightly retarded by the affinity matrix and was eluted in the buffer wash. The interaction of GAD with the ATP affinity matrix was qualitatively similar to its interaction with free ATP as reported in previous kinetic studies. The rank order of adenine nucleotides as eluting agents and affinity ligands was ATP > ADP > AMP. GAD was also eluted by its cofactor, pyridoxal 5'-phosphate, and this was enhanced by 1 mM Pi In contrast, a high concentration (140 mM) of Pi by itself was required to elute the enzyme. GAD remained active while bound to the affinity column and was eluted in the holoenzyme form by ATP, indicating that the affinity ligand did not bind in the active site and did not displace catalytically active cofactor from the enzyme.  相似文献   

3.
To determine the importance of single-chain Fv (scFv) affinity on binding, uptake, and cytotoxicity of tumor-targeting nanoparticles, the affinity of the epidermal growth factor receptor (EGFR) scFv antibody C10 was increased using molecular evolution and yeast display. A library containing scFv mutants was created by error-prone PCR, displayed on the surface of yeast, and higher affinity clones selected by fluorescence activated cell sorting. Ten mutant scFv were identified that had a 3-18-fold improvement in affinity (KD=15-88 nM) for EGFR-expressing A431 tumor cells compared to C10 scFv (KD=264 nM). By combining mutations, higher affinity scFv were generated with KD ranging from 0.9 nM to 10 nM. The highest affinity scFv had a 280-fold higher affinity compared to that of the parental C10 scFv. Immunoliposome nanoparticles (ILs) were prepared using EGFR scFv with a 280-fold range of affinities, and their binding and uptake into EGFR-expressing tumor cells was quantified. At scFv densities greater than 148 scFv/IL, there was no effect of scFv affinity on IL binding and uptake into tumor cells, or on cytotoxicity. At lower scFv densities, there was less uptake and binding for ILs constructed from the very low affinity C10 scFv. The results show the importance of antibody fragment density on nanoparticle uptake, and suggest that engineering ultrahigh affinity scFv may be unnecessary for optimal nanoparticle targeting.  相似文献   

4.
Adhesiveness of integrins is up-regulated rapidly by a number of molecules, including growth factors, cytokines, chemokines, and other cell surface receptors, through a mechanism termed inside-out signaling. The inside-out signaling pathways are thought to alter integrin affinity for ligand, or cell surface distribution of integrin by diffusion/clustering. However, it remains to be clarified whether any physiologically relevant agonists induce a rapid change in the affinity of beta1 integrins and how ligand-binding affinity is modulated upon stimulation. In this study, we reported that affinity of beta1 integrin very late Ag-5 (VLA-5) for fibronectin was rapidly increased in bone marrow-derived mast cells by Ag cross-linking of FcepsilonRI. Ligand-binding affinity of VLA-5 was also augmented by receptor tyrosine kinases when the phospholipase Cgamma-1/protein kinase C pathway was inhibited. Wortmannin suppressed induction of the high affinity state VLA-5 in either case. Conversely, introduction of a constitutively active p110 subunit of phosphatidylinositol 3-kinase (PI 3-kinase) increased the binding affinity for fibronectin. Failure of a constitutively active Akt to stimulate adhesion suggested that the affinity modulation mechanisms mediated by PI 3-kinase are distinct from the mechanisms to control growth and apoptosis by PI 3-kinase. Taken together, our findings demonstrated that the increase of affinity of VLA-5 was induced by physiologically relevant stimuli and PI 3-kinase was a critical affinity modulator of VLA-5.  相似文献   

5.
An enzyme-linker-peptide fusion protein reporter system was constructed for sensitive analysis of affinity of peptide ligands to their receptor. An E. coli alkaline phosphatase (EAP) mutant enzyme with high catalytic activity was selected as the reporter protein. Interaction of affinity peptide and streptavidin was applied as demonstration of the method. Three affinity peptides, strep-tag I (SI), strep-tag II (SII) and streptavidin binding peptide (SBP) were genetically fused to the C-terminal of EAP respectively, with an insertion of a flexible linker peptide in between. The enzyme activity of the EAP fusions showed no obvious change. After expression and purification, the EAP-affinity peptide fusions were applied to the streptavidin modified surface. Binding of the fusions to the surface through interaction of affinity peptides to streptavidin was indicated by color generated from conversion of the substrate by EAP. The relative affinity and specificity of each affinity peptides to the immobilized streptavidin were then evaluated with high sensitivity and broad detection range. This method may be used for effective high-throughput screening of high affinity peptide from the peptide pool.  相似文献   

6.
Two simple and generally applicable methods of preparation of affinity gels for affinity electrophoresis in agarose and polyacrylamide gels are described. In the first method, amino ligands are coupled to periodate-oxidized agarose gel beads (Sepharose 4B), and homogeneous affinity gels are obtained after mixing the melted substituted beads with either melted agarose solution or with the polymerization mixture used for the preparation of polyacrylamide gels. This type of affinity gel was used for affinity electrophoresis of lectins (immobilized p-aminophenyl glycosides), ribonuclease (immobilized uridine 3′,5′-diphosphate 5′-p-aminophenyl ester), trypsin (immobilized p-aminobenzamidine), and double-stranded phage DNA fragments (immobilized acriflavine). Alternatively, heterogeneous affinity gels are prepared from the suspension of ligand-substituted agarose, dextran, or polyacrylamide gel beads in the polymerization solution normally used for preparation of polyacrylamide electrophoretic gels. This technique was used for affinity electrophoresis of lectins, ribonuclease, and trypsin on affinity gels containing appropriate ligands coupled to the gel beads “activated” by various methods. Applicability of affinity gels prepared by the two methods described above for affinity isoelectric focusing is demonstrated.  相似文献   

7.
The 'FLITRX' random peptide library, consisting of dodecamer loop peptides displayed on a thioredoxin-flagellin scaffold on Escherichia coli, was used to select peptide sequences with affinity for a monoclonal antibody. These peptides were further screened for pH- and metal-sensitive antibody binding. Several zinc-sensitive peptides were identified, termed 'switch epitopes'. A soluble, monomeric thioredoxin loop ('Trxloop') insertion analog of a FLITRX switch epitope was constructed and its antibody binding properties were characterized by Western blots. Zinc-dependent antibody recognition was maintained in the Trxloop protein although the apparent antibody affinity was lower. This Trxloop protein bound to an immobilized metal affinity chromatography matrix, similar to a 'histidine-patch' thioredoxin variant, and was reversibly precipitated by 1 mM Zn(2+) or Cu(2+) ions. Residues important for zinc and antibody binding were determined by site-directed mutagenesis. The Trxloop antibody affinity was increased by saturation mutagenesis. Biotinylated Trxloop ('Biotrxloop') variants of the original and improved affinity Trxloop proteins were constructed and characterized by surface plasmon resonance measurements. Increased antibody affinity was partially due to a slower antibody desorption rate, although the relative adsorption rates were dependent on the amount of immobilized Biotrxloop protein, indicating an influence of avidity on the apparent affinity.  相似文献   

8.
In order to address the mechanism of enhancement of the affinity of an antibody toward an antigen from a thermodynamic viewpoint, anti-hen lysozyme (HEL) antibody HyHEL-10, which also recognize the mutated antigen turkey lysozyme (TEL) with reduced affinity, was examined. Grafting high affinity toward TEL onto HyHEL-10 was performed by saturation mutagenesis into four residues (Tyr(53), Ser(54), Ser(56), and Tyr(58)) in complementarity-determining region 2 of the heavy chain (CDR-H2) followed by selection with affinity for TEL. Several clones enriched have a Phe residue at site 58. Thermodynamic analyses showed that the clones selected had experienced a greater than 3-fold affinity increase toward TEL in comparison with wild-type Fv, originating from an increase in negative enthalpy change. Substitution of HyHEL-10 HTyr(58) with Phe led to the increase in negative enthalpy change and to almost identical affinity for TEL in comparison with mutants selected, indicating that mutations at other sites decrease the entropy loss despite little contribution to the affinity for TEL. These results suggest that the affinity of an antibody toward the antigen is enhanced by the increase in enthalpy change by some limited mutation, and excess entropy loss due to the mutation is decreased by other energetically neutral mutations.  相似文献   

9.
Thymidine transport was studied in isolated rat hepatocytes. In these cells no phosphorylation of the substrate by thymidine kinase occurred subsequent to transport. Results from studies of the concentration-dependent uptake of thymidine indicated two transport systems with about 80-fold differences in their kinetic constants. These systems were denoted as high affinity [Km = 5.3 micron, V = 0.47 pmol/(10(6) cells X s)] and low affinity systems [Km = 480 micron, V = 37.6 pmol/(10(6) cells X s)]. From intracellular to extracellular distribution ratios of [3H]thymidine it could be concluded that the uptake by the high affinity system was a concentrative process while the transport by the low affinity system was non-concentrative. The uptake of [3H]-thymidine by the high affinity system could only be inhibited by unlabeled thymidine. In contrast, all other nucleosides tested (uridine, 2'-deoxycytidine, and 2'-deoxyguanosine) were equally effective in inhibiting the low affinity system competitively. The results would suggest that in hepatocytes lacking phosphorylation by thymidine kinase, thymidine is taken up by a high and a low affinity system working in tandem. The high affinity system seems to be an active transport process with narrow substrate specificity. Thymidine uptake by the low affinity system is a facilitated diffusion process. This system is considered to be a common transport route for nucleosides of different structures.  相似文献   

10.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

11.
Effects of lithium in vivo and in vitro on the two molecular forms of Na+,K(+)-ATPase in rat brain were investigated. Inhibition by strophanthidin, affinity to monovalent cations and cellular localization of the enzyme were used to differentiate the two molecular forms. K+ dependent p-nitrophenylphosphatase activity and strophanthidin inhibition studies revealed selective increase in the activity of low affinity form but not high affinity form of the enzyme following lithium treatment. Na+ sensitivity of neither forms of Na+,K(+)-ATPase was changed but K+ sensitivity of low affinity form was increased due to lithium. Lithium showed biphasic effects on low affinity form of the enzyme; activation at low concentration and inhibition at high concentration. The results suggest that lithium in vivo regulates the concentration of extra cellular potassium by selectively acting at K+ site of low affinity form of the enzyme (astroglial) but not on high affinity form (neuronal enzyme) and leading to changes in neuronal depolarization.  相似文献   

12.
Characterization of a membrane regulator of insulin receptor affinity   总被引:1,自引:0,他引:1  
Using the technique of radiation inactivation we have previously shown that the insulin receptor behaves as if it is composed of at least two functional components: a binding component (Mr approximately equal to 100,000) and an affinity regulatory component (Mr approximately equal to 300,000). The interaction between the affinity regulator and binding component results in a decrease in the affinity of the receptor for insulin. To examine in more detail the interaction between this "affinity regulator" and the binding component we have studied the insulin receptor by radiation inactivation under conditions which alter receptor concentration or receptor affinity. Liver membranes of ob/ob mice exhibit a decrease in insulin binding when compared to their lean litter mates which is due to a decrease in receptor concentration. When studied by radiation inactivation, however, there was no detectable change in the interaction or size of the two receptor components. By contrast, under circumstances in which the affinity of the receptor was increased (treatment with high salt, high pH, 1 mM dithiothreitol, 1-5 micrograms/ml of trypsin), the interaction between the regulatory and binding components was either decreased or absent, i.e. there was no increase in binding with irradiation. Conversely, conditions which produce a decrease in receptor affinity resulted in an increase in the interaction between the regulatory and binding components. The changes in receptor affinity and interactions of the two components produced by either high salt or pH were reversible. Partial purification of the solubilized receptor on lectin affinity columns resulted in the apparent removal of the affinity regulator, i.e. receptor affinity was increased. In this state, radiation inactivation studies revealed a monoexponential decay indicating no interaction between binding and regulatory components. Taken together, these results suggest that the affinity regulator is a membrane protein which is both trypsin-sensitive and has disulfide bond(s) essential for its function. The interaction between the affinity regulator and binding component is not via a covalent bond and the two components appear to be separated by lectin chromatography. The interaction between these components appears to be altered in most states associated with altered receptor affinity.  相似文献   

13.
本文用NEM(N-ethylmaleimide)为探针研究了G蛋白(鸟嘌呤核苷酸调节蛋白,Gp)对小牛睾丸中FSH受体的亲和性及腺苷酸环化酶活性的调节作用。证据表明,①在小牛睾丸细胞膜G蛋白上存在两种类型鸟嘌呤核苷酸结合位点(下简称GTP结合位点),高亲和性低容量结合位点及低亲和性高容量结合位点;②高亲和性结合位点(对NEM敏感)调节腺苷酸环化酶活性,而对NEM相对不敏感的低亲和性位点则不直接参与该酶活性的调节;③G蛋白对受体亲和性的调节则不仅要高亲和性位点的参与,而且主要受低亲和性位点的调节。  相似文献   

14.
125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.  相似文献   

15.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

16.
An enzyme-linker-peptide fusion protein reporter system was constructed for sensitive analysis of affinity of peptide ligands to their receptor. An E. coli alkaline phosphatase (EAP) mutant enzyme with high catalytic activity was selected as the reporter protein. Interaction of affinity peptide and streptavidin was applied as demonstration of the method. Three affinity peptides, strep-tag I (SI), strep-tag II (SII) and streptavidin binding peptide (SBP) were genetically fused to the C-terminal of EAP respectively, with an insertion of a flexible linker peptide in between. The enzyme activity of the EAP fusions showed no obvious change. After expression and purification, the EAP-affinity peptide fusions were applied to the streptavidin modified surface. Binding of the fusions to the surface through interaction of affinity peptides to streptavidin was indicated by color generated from conversion of the substrate by EAP. The relative affinity and specificity of each affinity peptides to the immobilized streptavidin were then evaluated with high sensitivity and broad detection range. This method may be used for effective high-throughput screening of high affinity peptide from the peptide pool.  相似文献   

17.
The oxygen-binding properties of hexameric hemocyanin (Hc) from Scyllarides latus were investigated with respect to pH, temperature, and modulating effect exerted by calcium, lactate, and urate. The oxygen affinity decreased at higher temperature, was slightly affected by pH, and was insensitive to lactate. Nevertheless, urate markedly increased Hc-oxygen affinity and its temperature sensitivity, acting as the physiological major positive effector: four urate sites per hexamer with an overall affinity constant of 1 x 10(4) M(-1) were found and the exothermic contribution of their binding was found to be about 30 kJ mol(-1). Calcium ions largely influenced oxygen affinity: their effect, which has an opposite sign at low (0-1 mM) and high (0.1-1 M) concentration ranges, indicates the presence of two independent types of binding sites with high and low affinity, respectively; however, only the former ones seem to be operative in vivo because, at physiological calcium concentrations, they are already saturated and the oxygen affinity is reduced.  相似文献   

18.
Immobilized metal ion affinity partitioning of erythrocytes from different species is described. We have explored the affinity between transition metal chelates and metal-binding sites situated on the cell surface by partitioning in aqueous two-phase system composed of poly(ethylene glycol) and dextran. Soluble metal-chelate-poly(ethylene glycol) was prepared by fixing metal ions to poly(ethylene glycol) via the covalently bonded chelator, iminodiacetic acid. The partitioning behaviour of erythrocytes in systems at different concentrations of the ligand was tested. The copper-chelate-poly(ethylene glycol) was quite effective in the affinity extraction of human and rabbit erythrocytes, while the zinc-chelate-poly(ethylene glycol) displayed significant affinity only to the rabbit cells. Furthermore, the influence of various effectors such as imidazole, sialic acid on immobilized metal ion affinity partitioning of erythrocytes was examined.  相似文献   

19.
Anti-PEG IgM was purified by affinity chromatography using variable length PEG chains (5, 10, 20 and 30 kDa) as affinity ligands. Maximal binding of anti-PEG IgM was observed using the 30 kDa PEG-derivatized NuGel (single passage). Purified anti-PEG IgM was characterized for binding to PEG functionalized proteins/peptides by surface plasmon resonance, western blotting and ELISA. Anti-PEG IgM, in solution and adsorbed on 20 kDa PEG-derivatized NuGel, was subjected to pepsin digestion followed by affinity chromatography. SDS-PAGE analysis of eluates in both preparations yielded one fragment that was similar in size. However, an additional lower molecular weight band was observed in solution-digested affinity purified material that was not present in the eluate from the material subjected to pepsin digestion on the affinity matrix. The lower MW fragment could be eluted under milder conditions, suggesting loss of binding multiplicity. Analysis by mass spectrometry yielded molecular weights of 132 kDa (both) and 82 kDa (solution) for the respective fragments. N-terminal sequencing of both fragments resulted in primary sequences (heavy and light chains) that were not only identical to each other but also to those of native IgM. The anti-PEG IgM fragments were characterized for binding to pegylated interferon alfa-2a by ELISA. The results from these studies suggest that affinity purified anti-PEG IgM and fragments can be used as probes in detection assays for PEG functionalized biotherapeutics in pre-clinical and clinical studies.  相似文献   

20.
Purification of lysozyme by multistage affinity filtration   总被引:6,自引:0,他引:6  
A multistage affinity filtration process was developed for the purification of proteins. An affinity adsorbent was prepared by immobilizing Cibacron Blue 3GA to TSK gel HW-65F. Adsorption equilibrium experiments showed that the blue TSK gel had a high affinity for lysozyme, while its binding to bovine serum albumin (BSA) was weaker. Using a three-stage affinity filtration system, lysozyme was purified from a model system (a mixture of lysozyme and BSA) and a natural source (chicken egg white). From the chicken egg white, the three-stage affinity filtration increased the recovery yield of lysozyme from 61 to 96%, compared with the one-stage process. A mathematical model taking into account the film and interior diffusions of protein and eluant was developed for the modeling and analysis of the experimental data. Both the experimental and modeling results indicate that the multistage affinity filtration technique can be employed for the selective recovery of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号