首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trefoil factors (TFFs) are gastrointestinal peptides playing an essential role in the epithelial restitution. Among the three known TFF peptides, TFF1 is characterized by three disulfide bonds producing a compact globular structure and an extended and disordered tail formed by amino- and carboxy-termini. The presence of a cysteine surrounded by several negatively charged residues in this region of the protein, highly conserved in different species, suggests the possible formation of a metal-binding site. Affinity chromatography and mass spectrometric analyses allowed us to demonstrate a selective binding affinity of TFF1 for copper. The binding induces conformational changes in the tertiary structure as demonstrated by circular dichroism experiments, while limited proteolysis revealed an altered access to the cleavage sites in the amino- and carboxy-termini. The results of this study reveal a new property of TFF1 and suggest that copper could influence its biological activities by interfering with the dimerization of the peptide and/or the interaction with mucins or putative TFF receptors.  相似文献   

2.
The affinity of phosvitin with serine hydroxymethyl transferase (SHMT), an acidic multi-subunit protein, was evaluated by measurements of enzyme activity, sedimentation velocity, steady-state fluorescence, circular dichroism and kinetic thermal stability. While the presence of phosvitin had no effect on the SHMT activity, the sedimentation coefficient of SHMT increased from 8.7 S to 12.5 S suggesting the formation of a complex at a SHMT:phosvitin molar ratio of 2:1. Based on steady-state fluorescence quenching measurements an association constant of 2.4 +/- 0.2 x 10(5) M-1 at 25 degrees C was obtained for the interaction of phosvitin with SHMT. The temperature dependency of the association constant in the range 15-35 degrees C suggests the involvement of ionic forces in the interaction. The thermal inactivation of SHMT followed first order kinetics. In the presence of phosvitin the rate constant decreased and half time increased. The circular dichroism measurements suggest that phosvitin interaction does not involve pyridoxal phosphate binding domain of the enzyme. Although minor changes in the secondary structure of the enzyme were observed, the environment around aromatic amino acids did not change significantly.  相似文献   

3.
Notch signaling plays a key role in cell differentiation and is very well conserved from Drosophila to humans. Ligands of Notch receptors are type I, membrane spanning proteins composed of a large extracellular region and a 100-150 residue cytoplasmic tail. We report here, for the first time, the expression, purification, and characterization of the intracellular region of a Notch ligand. Starting from a set of synthetic oligonucleotides, we assembled a synthetic gene optimized for Escherichia coli codon usage and encoding the cytoplasmic region of human Jagged-1 (residues 1094-1218). The protein containing a N-terminal His(6)-tag was over-expressed in E. coli, and purified by affinity and reversed phase chromatography. After cleavage of the His(6)-tag by a dipeptidyl aminopeptidase, the protein was purified to homogeneity and characterized by spectroscopic techniques. Far-UV circular dichroism, fluorescence emission spectra, fluorescence anisotropy measurements, and (1)H nuclear magnetic resonance spectra, taken together, suggest that the cytoplasmic tail of human Jagged-1 behaves as an intrinsically unstructured domain in solution. This result was confirmed by the high susceptibility of the recombinant protein to proteolytic cleavage. The significance of this finding is discussed in relation to the recently proposed role of the intracellular region of Notch ligands in bi-directional signaling.  相似文献   

4.
I Bj?rk  E Pol 《FEBS letters》1992,299(1):66-68
Far-ultraviolet circular dichroism and tryptophan fluorescence measurements showed that the reversible unfolding of the cysteine proteinase inhibitor, chicken cystatin, by guanidinium chloride is a two-step process with transition midpoints at approximately 3.4 and approximately 5.4 M denaturant. The partially unfolded intermediate had both far- and near-ultraviolet circular dichroism and fluorescence emission spectra comparable to those of the native protein. The largely retained tertiary structure suggests that the intermediate represents a species in which a separate region of lower stability has been unfolded, rather than an intermediate of the 'molten globule' type. Such a structurally independent region is apparent in the three-dimensional structure of the inhibitor.  相似文献   

5.
Conformational changes of beta-lactoglobulin (beta-LG) induced by anionic phospholipid (dimyristoylphosphatidylglycerol, DMPG) at physiological conditions (pH 7.0) have been investigated by UV-VIS, circular dichroism (CD) and fluorescence spectra. The experimental results suggest that beta-LG-DMPG interactions cause beta-LG a structural reorganization of the secondary structure elements accompanied by an increase in alpha-helical content, and a loosening of the protein tertiary structure. The interaction forces between beta-LG and DMPG are further evaluated by fluorescence spectra. The fluorescence spectral data show that conformational changes in the protein are driven by electrostatic interaction at first, then by hydrophobic interaction between a protein with a negative net charge and a negatively charged phospholipid.  相似文献   

6.
The head shell of bacteriophage lambda expands by about 20% in diameter when it packages the DNA molecule in vivo. The expansion reaction is essentially a conformational change of the major head protein molecules to a state of lower free energy and can also be triggered in vitro by treatment with 4 M-urea. In order to investigate the conformational change, we have measured the circular dichroism, fluorescence and difference absorption spectra of the lambda head shell before and after the expansion by the treatment with urea. The far-ultraviolet circular dichroism spectra and the fluorescence spectra show that the expansion is not accompanied by a great change in the secondary structure (29% alpha-helix, 23% beta-structure) and the environment (non-polar) of the tryptophan residues of the major head protein molecule. On the other hand, by measurements of the circular dichroism and difference absorption spectra in the near-ultraviolet region as well as by chemical modification experiments with tetranitromethane, we have found that one or two tyrosine residues of the major head protein are transferred from a polar, solvent-exposed to a non-polar, solvent-unexposed environment during the expansion. Judging from these results, the conformational change seems to be mainly intermolecular or interdomainal rather than intradomainal.  相似文献   

7.
The thermal stabilities of the extramembranous and transmembranous regions of the bacterial voltage-gated sodium channel NaChBac have been characterised using thermal-melt synchrotron radiation circular dichroism (SRCD) spectroscopy. A series of constructs, ranging from the full-length protein containing both the C-terminal cytoplasmic and the transmembranous domains, to proteins with decreasing amounts of the cytoplasmic domain, were examined in order to separately define the roles of these two types of domains in the stability and processes of unfolding of a membrane protein. The sensitivity of the SRCD measurements over a wide range of wavelengths and temperatures has meant that subtle but reproducible conformational changes could be detected with accuracy. The residues in the C-terminal extramembranous domain were highly susceptible to thermal denaturation, but for the most part the transmembrane residues were not thermally-labile and retained their helical character even at very elevated temperatures. The process of thermal unfolding involved an initial irreversible unfolding of the highly labile distal extramembranous C-terminal helical region, which was accompanied by a reversible unfolding of a small number of helical residues in the transmembrane domain. This was then followed by the irreversible unfolding of a limited number of additional transmembrane helical residues at greatly elevated temperatures. Hence this study has been able to determine the different contributions and roles of the transmembrane and extramembrane residues in the processes of thermal denaturation of this multipass integral membrane protein.  相似文献   

8.
The two forms of chicken cystatin, with different isoelectric points, that have been described previously were indistinguishable in analyses of amino- and carboxy-terminal residues, amino acid composition, and peptide maps. The two forms thus are highly similar and most likely differ only in an amide group or in a small charged substituent. The binding of either cystatin form to highly purified, active papain was accompanied by the same pronounced changes in near-ultraviolet circular dichroism, ultraviolet absorption, and fluorescence emission. These changes were compatible with perturbations of the environment of aromatic residues in one or both proteins of the complex, arising from local interactions or from a conformational change. Modification of the single tryptophan residue of cystatin, at position 104, with N-bromosuccinimide resulted in considerably smaller spectroscopic changes on binding of the inhibitor to papain, indicating that the environment of this residue is affected by the binding. Analogous modification of Trp-69 and Trp-177 of papain markedly affected the fluorescence changes observed on binding of cystatin to the enzyme, similarly suggesting that these two residues of papain are involved in the interaction. The fluorescence increase of papain at alkaline pH, arising from Trp-177 and due to deprotonization of the adjacent His-159, was abolished on binding of cystatin to the enzyme, further supporting the proposal that this region of papain participates in the interaction with the inhibitor. A stoichiometry of binding of either cystatin form to papain of 1:1 and a lower limit for the binding constant of 10(9) M-1 were determined by titrations monitored by either the ultraviolet absorption or fluorescence changes induced by the interaction.  相似文献   

9.
Protein translocation across the cytoplasmic membrane of Escherichia coli is mediated by translocase, a complex of a protein-conducting channel, SecYEG, and a peripheral motor domain, SecA. SecYEG has been proposed to constitute an aqueous path for proteins to pass the membrane in an unfolded state. To probe the solvation state of the active channel, the polarity sensitive fluorophore N-((2-(iodoacetoxy)ethyl)-N-methyl) amino-7-nitrobenz-2-oxa-1,3-diazole was introduced at specific positions in the C-terminal region of the secretory protein proOmpA. Fluorescence measurements with defined proOmpA-DHFR translocation intermediates indicate mostly a water-exposed environment with a hydrophobic region in the center of the channel.  相似文献   

10.
Two isoforms of voltage-dependent Na channels, cloned from rat skeletal muscle, were expressed in Xenopus oocytes. The currents of rSkM1 and rSkM2 differ functionally in 4 properties: (i) tetrodotoxin (TTX) sensitivity, (ii) mu-conotoxin (mu-CTX) sensitivity, (iii) amplitude of single channel currents, and (iv) rate of inactivation. rSkM1 is sensitive to both TTX and mu-CTX. rSkM2 is resistant to both toxins. Currents of rSkM1 have a higher single channel conductance and a slower rate of inactivation than those of rSkM2. We constructed (i) chimeras by interchanging domain 1 (D1) between the two isoforms, (ii) block mutations of 22 amino acids in length that interchanged parts of the loop between transmembrane segments S5 and S6 in both D1 and D4, and (iii) point mutations in the SS2 region of this loop in D1. The TTX sensitivity could be switched between the two isoforms by the exchange of a single amino acid, tyrosine-401 in rSkM1 and cysteine-374 in rSkM2 in SS2 of D1. By contrast most chimeras and point mutants had an intermediate sensitivity to mu-CTX when compared with the wild-type channels. The point mutant rSkM1 (Y401C) had an intermediate single-channel conductance between those of the wild-type isoforms, whereas rSkM2 (C374Y) had a slightly lower conductance than rSkM2. The rate of inactivation was found to be determined by multiple regions of the protein, since chimeras in which D1 was swapped had intermediate rates of inactivation compared with the wild-type isoforms.  相似文献   

11.
Tulumello DV  Deber CM 《Biochemistry》2011,50(19):3928-3935
α-Helical transmembrane (TM) segments in membrane proteins are comprised primarily of hydrophobic amino acids that accommodate insertion from water into the nonpolar membrane bilayer. In many such segments, however, polar residues are also present for structural or functional reasons. These latter residues impair the local favorable acyl interactions required for solvation by hydrophobic media such as phospholipids in native bilayers or detergents used for in vitro characterization. Using a series of Lys-tagged designed TM-like peptides (typified by KK-YAAAIAAIAWAIAAIAAAIAA-KKK) in which single-Asn residue substitutions (from Ile or Ala) were made successively from the center of the hydrophobic region toward the C-terminus, we demonstrate that polar residues strongly alter the nature of the interaction between TM segments and the solvating detergent. Through the application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, and tryptophan fluorescence, we observed drastic differences in the structures of the detergent-peptide complexes that contain relatively minor sequence differences. For example, the blue shift of the Trp fluorescence (indicating local detergent solvation at this location) differs by as much as ~10 nm depending upon the position of a single Asn substitution in an otherwise identical segment. The overall results suggest that polar point mutations occurring in a biological membrane will elicit comparable effects, placing a significant refolding burden on the local protein structure and potentially leading to disease states through altered protein--lipid interactions in membrane proteins.  相似文献   

12.
The interaction of the bisbenzimidazole dye 33258 Hoechst with DNA and chromatin is characterized by changes in absorption, fluorescence, and circular dichroism measurements. At low dye/phosphate ratios, dye binding is accompanied by intense fluorescence and circular dichroism and exhibits little sensitivity to ionic strength. At higher dye/phosphate ratios, additional dye binding can be detected by further changes in absorptivity. This secondary binding is suppressed by increasing the ionic strength. A-T rich DNA sequences enhance both dye binding and fluorescence quantum yield, while chromosomal proteins apparently exclude the dye from approximately half of the sites available with DNA. Fluorescence of the free dye is sensitive to pH and, below pH 8, to quenching by iodide ion. Substitution of 5-bromodeoxyuridine (BrdU) for thymidine in synthetic polynucleotides, DNA, or unfixed chromatin quenches the fluorescence of bound dye. This suppression of dye fluorescence permits optical detection of BrdU incorporation associated with DNA synthesis in cytological chromosome preparations. Quenching of 33258 Hoechst fluorescence by BrdU can be abolished by appropriate alterations in solvent conditions, thereby revealing changes in dye fluorescence of microscopic specimens specifically due to BrdU incorporation.  相似文献   

13.
The interaction of meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) sodium salt to human serum albumin and beta-lactoglobulin was studied by steady-state and dynamic fluorescence at different pH of aqueous solutions. The formation of TSPP J-aggregates and a noncovalent TSPP-protein complex was monitored by fluorescence titrations, which depend on pH and on the protein nature and concentration. The complex between TSPP and protein displays a heterogeneous equilibrium with large changes in the binding strength versus pH. The large reduction of the effective binding constant from pH 2 to 7 suggests that electrostatic interactions are a major contribution to the binding of TSPP to the aforementioned proteins. TSPP aggregates and TSPP-protein complex exhibit circular dichroism induced by the presence of the protein. Circular dichroism spectra in the ultraviolet region show that the secondary structure of both proteins is not extensively affected by the TSPP presence. Protein-TSPP interaction was also examined by following the intrinsic fluorescence of the tryptophan residues of the proteins. Fluorescence quenching by acrylamide and TSPP itself also point to small changes on the protein tertiary structure and a critical distance R(0) approximately 56 A, between tryptophan and bound porphyrin, was estimated using the long distance F?rster-type energy transfer formalism.  相似文献   

14.
Human lens crystallins were studied by absorption, circular dichroism and fluorescence spectroscopy. The absorption spectra in the near-ultraviolet region show some differences in intensity, but spectral features are similar, except for the alpha-crystallin, which gives a fine structure due to phenylalanine between 250 and 270 nm. Tryptophan fluorescence and near-ultraviolet circular dichroism indicate that tryptophan residues are more exposed in alpha-crystallin than in either beta- or gamma-crystallin, and that the degree of exposure decreases in the order of alpha less than beta 1 greater than beta 2 greater than beta 3 greater than gamma. The far ultraviolet CD suggests that these proteins exist mainly in a beta-sheet conformation and that the amount does not vary much among them. The greater exposure of the tryptophan residues in the high-molecular-weight crystallins may reflect greater unfolding in their protein domains. Spectroscopic measurements are thus useful in predicting protein tertiary structure in the absence of the complete sequence and X-ray data. The fact that the high-molecular-weight proteins exist in a more unfolded state may render them more vulnerable to exogeneous insults, and these effects may be studied by spectroscopic measurements.  相似文献   

15.
Ligand-induced conformational changes in cytosolic protein kinase C   总被引:1,自引:0,他引:1  
The changes in intrinsic spectral properties of protein kinase C were monitored upon association with its divalent cation and lipid activators in a model membrane system. The enzyme demonstrated changes in both its intrinsic fluorescence and far ultraviolet circular dichroism spectra upon association with lipid vesicles in the absence of calcium. The acidic phospholipid, phosphatidylserine, significantly quenched the intrinsic tryptophan fluorescence and was also the most potent lipid support for the phosphorylating activity of the enzyme. The enzyme was fully activated by a number of Ca2(+)-lipid combinations which correlated with maximal fluorescence quenching (40-50%) of available tryptophan residues in hydrophobic domains. The circular dichroism structure of the associated active-protein Ca2(+)-lipid complexes suggested different active enzyme secondary structures. However, the Ca2(+)-dependent changes in fluorescence and circular dichroism spectra were observed only after the enzyme associated with the lipid vesicles. These data suggest that protein kinase C has the properties of a complex multidomain protein and provides an additional perspective into the mechanism of protein kinase C activation.  相似文献   

16.
Cadherins are single pass transmembrane proteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion by linking the cytoskeletons of adjacent cells. In adherens junctions, the cytoplasmic domain of cadherins bind to beta-catenin, which in turn binds to the actin-associated protein alpha-catenin. The physical properties of the E-cadherin cytoplasmic domain and its interactions with beta-catenin have been investigated. Proteolytic sensitivity, tryptophan fluorescence, circular dichroism, and (1)H NMR measurements indicate that murine E-cadherin cytoplasmic domain is unstructured. Upon binding to beta-catenin, the domain becomes resistant to proteolysis, suggesting that it structures upon binding. Cadherin-beta-catenin complex stability is modestly dependent on ionic strength, indicating that, contrary to previous proposals, the interaction is not dominated by electrostatics. Comparison of 18 cadherin sequences indicates that their cytoplasmic domains are unlikely to be structured in isolation. This analysis also reveals the presence of PEST sequences, motifs associated with ubiquitin/proteosome degradation, that overlap the previously identified beta-catenin-binding site. It is proposed that binding of cadherins to beta-catenin prevents recognition of degradation signals that are exposed in the unstructured cadherin cytoplasmic domain, favoring a cell surface population of catenin-bound cadherins capable of participating in cell adhesion.  相似文献   

17.
The effect of 1-hexanol on spectral properties and the processes of energy transfer of the green gliding photosynthetic bacterium Chloroflexus aurantiacus was investigated with reference to the baseplate region. On addition of 1-hexanol to a cell suspension in a concentration of one-fourth saturation, a specific change in the baseplate region was induced: that is, a bleach of the 793-nm component, and an increase in absorption of the 813-nm component. This result was also confirmed by fluorescence spectra of whole cells and isolated chlorosomes. The processes of energy transfer were affected in the overall transfer efficiency but not kinetically, indicating that 1-hexanol suppressed the flux of energy flow from the baseplate to the B806-866 complexes in the cytoplasmic membranes. The fluorescence excitation spectrum suggests a specific site of interaction between bacteriochlorophyll (BChl) c with a maximum at 771 nm in the rod elements and BChl a with a maximum at 793 nm in the baseplate, which is a funnel for a fast transfer of energy to the B806-866 complexes in the membranes. The absorption spectrum of chlorosomes was resolved to components consistently on the basis, including circular dichroism and magnetic circular dichroism spectra; besides two major BChl c forms, bands corresponding to tetramer, dimer, and monomer were also discernible, which are supposed to be intermediary components for a higher order structure. A tentative model for the antenna system of C. aurantiacus is proposed.Abbreviations A670 a component whose absorption maximum is located at 670 nm - (B)Chl (bacterio)chlorophyll - CD circular dichroism - F675 a component whose emission maximum is located at 675 nm - FMO protein Fenna-Mathews-Olson protein - LD linear dichroism - LH light-harvesting - McD magnetic circular dichroism - PS photosystem - RC reaction center  相似文献   

18.
A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data.  相似文献   

19.
Epand RF  Sayer BG  Epand RM 《Biochemistry》2005,44(14):5525-5531
The peptide N-acetyl-KWASLWNWFNITNWLWYIK-amide has a sequence that corresponds to the juxtamembrane region of the HIV-1 gp41 fusion protein. We have studied how cholesterol modulates the interaction of this peptide with membranes containing cholesterol using differential scanning calorimetry, circular dichroism, fluorescence spectroscopy, and nuclear magnetic resonance. We find that this peptide is less able to sequester cholesterol into domains than is N-acetyl-LWYIK-amide. On the other hand, the peptide N-acetyl-LASWIK-amide, which corresponds to a segment of HIV-2 and SIV gp41 fusion proteins, has intermediate potency between N-acetyl-KWASLWNWFNITNWLWYIK-amide and N-acetyl-LWYIK-amide in forming areas enriched in cholesterol, even though it does not have a cholesterol recognition/interaction amino acid consensus sequence (CRAC). We suggest that the difference between HIV-1 and HIV-2 in their requirements for glycosphingolipids in determining their tropism is related to their difference in partitioning to cholesterol-rich domains in biological membranes.  相似文献   

20.
Thyroglobulin of very low iodine content has been prepared from a single non-toxic human goitre. The initial iodine content of the protein (0.038%) has been increased to levels of 0.16% and 0.85% by in vitro treatment with thyroid peroxidase and the resulting proteins studied with respect to their intrinsic fluorescence, circular dichroism spectra and binding of the hydrophobic probe 1,8-anilinonaphthalene sulfonic acid (ANS). While significant differences were observed between levels of iodination in both the ANS binding and intrinsic fluorescence of the thyroglobulin, no significant differences in the near and far UV circular dichroism spectra of the protein as a function of iodine content were observed. These data suggest that, the iodination of thyroglobulin effects specific areas of the protein without significant disruption of its overall secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号