首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Medical genetic study of the population of Altai Republic (Russia) has been performed. The population sample comprises 203148 subjects, including 59196 Altaians, 134972 Russians, and 8980 Kazakhs. For each nosological group, the loads of Mendelian pathology with different modes of inheritance and their prevalence rates in urban and rural populations have been determined. Thirty-six autosomal dominant (AD) diseases have been found in a total of 121 subjects, with hereditary syndromes being the most prevalent. Autosomal recessive (AR) pathology is represented by 24 diseases found in 158 subjects, with metabolic disorders being the most prevalent; and X-linked pathology, by four diseases in nine subjects. The prevalence rate has been calculated for each nosological form in the district where it has been found. The loads of AD, AR, and X-linked pathologies in the urban population were, respectively, 2.98 and 9.62 per 1000 people and 0.56 per 1000 men in Altaians; 0.86 and 0.94 per 1000 people and 0.23 per 1000 men in Russians; 0.34 and 1.16 per 1000 people in Kazakhs. In the rural population, the genetic load has been calculated for each district. The spectrum of hereditary pathology in the populations studied is described.  相似文献   

2.
Medico-genetic characteristics of the Ashkhabad province of Turkemenia are given. 23 nosological forms of hereditary diseases were found. The population load estimated per 1000 of autosomal-recessive (AR) diseases was 0.7, autosomal-dominant (AD) - 0.4, X-linked - 0.5. Inbreeding coefficient for the families with AR pathology was 0.03529, with AD - 0.01172. The study of territorial distribution of hereditary disease detected slightly marked local accumulation of certain forms of hereditary diseases.  相似文献   

3.
A summary of the medical genetic studies of the Marii El population is presented. A total of 276,900 people, 110,894 and 166,006 urban and rural inhabitants, respectively, were examined. Regarding the ethnic composition, the studied population was mostly Mari (61.96%) and Russian (32.04%). Medical genetic examination revealed 480 subjects from 260 families with autosomal dominant (AD) diseases, 234 subjects from 184 families with autosomal recessive (AR) diseases, and 49 subjects from 41 families with x-linked diseases. Segregation analysis revealed a good agreement between the expected and observed segregation frequencies for families with AR and AD diseases and allowed the frequency of hereditary diseases in the urban and rural, as well as the Russian and Mari, populations, to be estimated. The total frequency of AD diseases in Maris was approximately twice as high as in Russians (1.99 and 0.97%, respectively); substantial differences between district populations were found. The total frequency of AR diseases was also two times higher in Maris than in Russians (1.00 and 0.54%, respectively). The frequencies of AR and AD diseases in different districts were correlated with the levels of random and local inbreeding, population size, and the index of maximum selection.  相似文献   

4.
The diversity of Mendelian hereditary pathology has been studied in Sakha Republic (Yakutia). The sample comprised 1 000 700 subjects, including 363 316 Yakuts, 14 428 Evenks, 8668 Evens, 550 263 Russians, and 64 025 subjects from other ethnic groups. Fifty-one autosomal dominant (AD) diseases, including five diseases with frequencies of 1 : 50 000 or higher; 40 autosomal recessive (AR) diseases, including eight diseases with frequencies of 1 : 50 000 or higher in the Yakut population; and five X-linked diseases have been detected.  相似文献   

5.
The diversity of Mendelian hereditary pathology has been studied in Sakha Republic (Yakutia). The sample comprised 1 000 700 subjects, including 363 316 Yakuts, 14 428 Evenks, 8668 Evens, 550 263 Russians, and 64 025 subjects from other ethnic groups. Fifty-one autosomal dominant (AD) diseases, including five diseases with frequencies of 1 : 50 000 or higher; 40 autosomal recessive (AR) diseases, including eight diseases with frequencies of 1 : 50 000 or higher in the Yakut population; and five X-linked diseases have been detected.  相似文献   

6.
The results of medico-genetic investigation of population of Ashkhabad city are presented involving 229 thousand individuals (118230 Turkomans, 94050 Russians and 16720 subjects of other nationalities). Aggravation values the ethnic groups studied are as follows: Turkomen--AD (autosome-dominant = 0.86 per 1000 subjects, AR (autosome-recessive) = 2.31 per 1000 subjects, attached X chromosomes = 0.52 per 1000 males; Russians--AD = 0.93 per 1000 subjects, AR = 0.84, attached X chromosomes = 0.17 per 1000 males; other nationalities AD = 0.81, AR = 1.43, attached X chromosomes = 0.27. Aggravation of the urban Turkomen population is more valid than that of rural people. Relationship between non-accidental inbreeding rate and aggravation with autosome-recessive pathology is shown for several ethnic subdivisions of the population studied.  相似文献   

7.
The results of a medical genetic survey of the population of four raions (176535 individuals) of Rostov oblast (Dubovsky, Zimovnikovsky, Myasnikovsky, and Krasnosulinsky raions) are presented. The load of autosomal dominant (AD), autosomal recessive (AR), and X-linked hereditary diseases for urban and rural population was calculated, and the diversity of monogenic hereditary diseases (MHD) was reviewed. The nosological spectrum of MHD constituted 117 diseases (63 diseases with AD inheritance; 38, with AR inheritance; and 16, with X-linked inheritance). The analysis showed that the incidence of MHD among the population of Rostov oblast was 1: 336. Considerable differentiation in the prevalence rates of MHD (AD, AR, and X-linked pathologies) among certain raions was revealed.  相似文献   

8.
The spectrum and prevalence rate of hereditary pathology in Kanevskii and Bryukhovetskii raions (districts) of Krasnodar krai (territory) were analyzed. The total size of the studied population was 145,937. The prevalence rate of monogenic hereditary pathology was estimated. This value was 1.08 +/- 0.08, 0.72 +/- 0.07, and 0.20 +/- 0.06 per 1000 people for autosomal dominant (AD), autosomal recessive (AR), and X-linked (XL) recessive diseases, respectively. Forty-two AD (158 affected persons in 82 families), 32 AR (105 affected persons in 82 families), and 6 XL disease entities (13 affected persons in 8 families) were found. A slight genetic subdivision was found in the populations of Kanevskii and Bryukhovetskii raions. However, it was not found to affect the prevalence of hereditary pathology.  相似文献   

9.
This paper estimates the load and nosological spectrum of monogenic hereditary diseases (HDs) in Abazins of the Karachay-Cherkess Republic (KChR), identified in Cherkessk and ten districts, Abazinsky, Ust-Dzhegutinsky, Malokarachaevsky, Karachaevsky, Prikubansky, Khabezsky, Nogaysky, Adyge-Khablsky, Urupsky, and Zelenchuksky. The number of the investigated population was 387231 individuals (including 33264 Abazins). We detected 153 patients from 105 families with 45 nosological forms of HDs: 83 patients from 50 families with 23 AD diseases, 47 patients from 42 families with 15 AR diseases, and 23 patients from 13 families with 7 X-linked diseases. The total load of HDs in Abazins was 1: 218 individuals (in the rural population 1: 162, in the urban population 1: 305). Frequent and rare nosological forms of HDs and the accumulation of certain diseases in Abazins in comparison with the previously surveyed populations of Russia were determined. On the basis of the prevalence of AD and AR hereditary diseases, a principal component analysis was carried out, which determined the genogeographical position of Abazins among nine ethnic groups (13 populations) of Russian Federation: six Russian regions, Bashkirs of the Bashkortostan, Tatars of the Tatarstan, Chuvashes of the Chuvashia, Maris of the Mari El, Udmurts of the Udmurtia, Adygeans of the Adygea, and Circassians and Abazins of the KChR.  相似文献   

10.
The results of integrated study of the genetic structure and prevalence of monogenic hereditary diseases (MHDs) in the child population of three republics of Russia are summarized. Eight raions (districts) of the Republic of Bashkortostan and six districts of each Republic of Chuvashia and Republic of Udmurtia has been surveyed. The total population surveyed was 782184 people, with children accounting for 24.67% of them (192992 children). The loads of autosomal dominant (AD), autosomal recessive (AR), and X-linked MHDs have been calculated separately for urban and rural populations; differences between individual populations in the MHD load have been found. The differentiation of subpopulations with respect to MHD prevalence is explained by differences in the degree of subdivision. The MHD spectrum in the child population of the three republics comprises 222 disease entities, including 121 AD, 83 AR, and 18 X-linked diseases. Group of highly prevalent MHDs in regional child populations have been determined. The mean fitness of MHD patients in Bashkortostan has been calculated; it is 0.87, 0.04 and 0.16 for AD, AR, and X-linked diseases, respectively. Analysis has demonstrated that the prevalence rates of MHDs in the child populations of the republics of Chuvashia, Udmurtia, and Bashkortostan are 1, 1.2, and 1.4%, respectively.  相似文献   

11.
Analysis of the diversity of monogenic hereditary diseases in eight raions (districts) of Rostov oblast (region) of Russia (Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions) has been summarized. The total sample size was 320925 subjects. The spectrum of hereditary diseases detected in the eight districts comprises 187 diseases, including 99 autosomal dominant (AD), 72 autosomal recessive (AR), and 16 X-linked diseases. The mean prevalence rate of each disease in the total population has been calculated. Accumulation of individual diseases in different regions of Rostov oblast has been calculated; the disease accumulation has been compared with that in some populations of Russia examined earlier. Cluster analysis using the data on the frequencies of genes of hereditary diseases has shown the gene geographic position of the Rostov oblast population among the following ethnic populations of Russia: Russians (Kostroma, Kirov, and Rostov oblasts and Krasnodar krai), Chuvashes (Chuvashia), Adygeans (Adygea), Maris (Marii El), and Udmurts (Udmurtia).  相似文献   

12.
The diversity of monogenic hereditary diseases (HDs) (autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases) has been studied in five districts of Bashkortostan Republic: Burzyanskii, Abzelilovskii, Baimak, Salavatskii, and Arkhangel’skoe raions. The spectrum of HDs comprised 144 diseases, including 83, 48, and 13 AD, AR, and X-linked diseases. Most of them were found earlier during studies in ten other regions of Russia (Kirov, Kostroma, Tver’, Bryansk, and Rostov oblasts, and Krasnodar krai, and the republics of Adygea, Marii El, Udmurtia, and Chuvashia). Foci of local accumulation of some AD, AR, and X-linked diseases have been found in individual districts. Data on the gene frequencies for the HDs have been used for cluster analysis, which has shown the gene geographic position of Bashkirs among nine ethnic populations of Russia: Russians (Kostroma, Kirov, and Rostov oblasts and Krasnodar krai), Chuvashes (Chuvashia), Adygeans (Adygea), Maris (Marii El), Udmurts (Udmurtia), and Bashkirs (Bashkortostan).  相似文献   

13.
A genetic epidemiological study has been carried out in eight raions (districts) of Rostov oblast (region) of Russia: Tsimlyansk, Volgodonskoi, Tselina, Egorlykskaya, Millerovo, Tarasovskaya, Rodionovo-Nesvetaiskaya, and Matveevo-Kurgan raions. The population structure (the parameters of the isolation by distance model, ethnic assortative marriage, random inbreeding (F ST), endogamy index, and ie) and the genetic demographic characteristics of the regional population (vital statistics, Crow’s index, and its components) have been analyzed. The total sample size was 320 925 subjects (including 114 106 and 206 816 urban and rural residents, respectively). The load of the main types of Mendelian diseases (autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases) has been calculated for the total sample from eight districts and separately for the urban and rural populations. Substantial differences between individual districts in the AD and AR genetic loads have been found, especially upon separation into urban and rural samples. The results of correlation analysis suggest that migration and genetic drift are the main factors of genetic differentiation of populations with respect to the prevalence of hereditary diseases.  相似文献   

14.
Integrated study of the genetic structure of the Udmurt population with respect to different genetic systems has been performed. Data on the genes of genetic diseases, abiotic parameters analyzed by population statistic methods, and DNA polymorphism are summarized. The populations of six raions (districts) of Udmurt Republic (the Mozhga, Malaya Purga, Sharkan, Debesy, Igra, and Glazov raions) have been studied. The total population studied was 267 655 people (an urban population of 150 119 people and a rural population of 117 536 people), including 155 346 Udmurts. The population structure has been studied in six districts on the basis of the vital statistics, Crow’s indices, Malecot’s isolation by distance parameters, ethnically assortative marriage parameters, endogamy indices, inbreeding-endogamy (ie) indices, and frequencies of the genotype and allele frequencies of four DNA markers (17 alleles). The prevalences of hereditary diseases have been calculated for different population groups: urban and rural populations, Udmurts and other ethnic groups. These groups, especially the urban and rural populations, substantially differed from one another in the prevalences of autosomal dominant (AD) and autosomal recessive (AR) diseases. The correlation between the prevalence of AD and AR diseases and the ie index is positive and significant. The spectrum of hereditary diseases detected in six districts of Udmurtia comprises 149 diseases (80, 57, and 12 AD, AR, and X-linked diseases, respectively). Accumulation of individual diseases in districts of Udmurtia and accumulation of diseases in Udmurtia as compared to regions studied earlier has been found. Cluster analysis of the frequencies of genes of AD and AR diseases and DNA markers has determined the gene geographic position of Udmurts.  相似文献   

15.
Integrated study of the genetic structure of the Udmurt population with respect to different genetic systems has been performed. Data on the genes of genetic diseases, abiotic parameters analyzed by population statistic methods, and DNA polymorphism are summarized. The populations of six raions (districts) of Udmurt Republic (the Mozhga, Malaya Purga, Sharkan, Debesy, Igra, and Glazov raions) have been studied. The total population studied was 267,655 people (an urban population of 150,119 people and a rural population of 117,536 people), including 155,346 Udmurts. The population structure has been studied in six districts on the basis of the vital statistics, Crow's indices, Malecot's isolation by distance parameters, ethnically assortative marriage parameters, endogamy indices, inbreeding-endogamy (ie) indices, and frequencies of the genotype and allele frequencies of four DNA markers (17 alleles). The prevalences of hereditary diseases have been calculated for different population groups: urban and rural populations, Udmurts and other ethnic groups. These groups, especially the urban and rural populations, substantially differed from one another in the prevalences of autosomal dominant (AR) and autosomal recessive (AR) diseases. The correlation between the prevalence of AD and AR diseases and the ie index is positive and significant. The spectrum of hereditary diseases detected in six districts of Udmurtia comprises 149 diseases (80, 57, and 12 AD, AR, and X-linked diseases, respectively). Accumulation of individual diseases in districts of Udmurtia and accumulation of diseases in Udmurtia as compared to regions studied earlier has been found. Cluster analysis of the frequencies of genes of AD and AR diseases and DNA markers has determined the gene geographic position of Udmurts.  相似文献   

16.
Here we present the data obtained during medical genetic examination of the population of five districts of Bashkortostan Republic (Burzyanskii, Baimakskii, Abzelilovskii, Salavatskii, and Arkhangelskii) populated with 168050 persons including 135748 Bashkirs. The study involved all the population of the districts including each ethnic group and was conducted according to standard protocol developed in the Laboratory of Genetic Epidemiology, Medical Genetic Research Center, Russian Academy of Medical Sciences. Based on segregation analysis, the values of prevalence rates of the major types of Mendelian pathology (AD, AR, and X-linked diseases) was calculated in five regions of the Republic as well as for Bashkirs alone. Significant differences in the prevalence rates of AD and AR pathologies between individual districts, in particular upon division in rural and urban population, was observed. The prevalence rates comparison of monogenic hereditary pathology among Bashkirs compared to other previously examined populations have shown that the patterns of the hereditary disease load in the inspected districts of Bashkortostan were similar to that observed in the population of some districts in Udmurtia, Marii El and Chuvashiya. Russian European populations have shown significantly lower load of hereditary diseases. Correlation analysis of local inbreeding, endogamy and prevalence rates of AD and AR pathologies has shown that development of hereditary diseases load is significantly affected by gene drift.  相似文献   

17.
The analysis of the spectrum of hereditary diseases in the population of the Krasnodar province is performed and the influence of the population dynamics factors on the spectrum is discussed. More than 130 nosological forms were discovered in the population of approx. 200,000. Among these, there are 63 autosomal dominant, 49 autosomal recessive and 17 X-linked recessive forms. Of the most frequent autosomal dominant diseases (more than 1 per 50,000) autosomal recessive and X-linked recessive disorders 13, 7 and 7 forms, respectively, were picked up. The coefficient of diversity of hereditary diseases (the number of nosological forms per 10 inhabitants) with different types of inheritance is higher in the Krasnodar population, as compared with the Kostroma population. The problem of similarity of the "nucleus" of autosomal-recessive disorders in Russian populations is discussed.  相似文献   

18.
Medical-genetic study was carried out in the population of Khorezm province (population size above 200 000 persons). Hereditary pathology was ascertained among families having two or more members affected with chronic non-infectious diseases. 155 families with 348 members affected with hereditary diseases were registered. The most frequent were autosomal recessive diseases (55 nosological forms in 104 families with 271 affected), then followed the autosomal dominant conditions (10 nosological forms in 21 families with 53 affected). The less frequent was X-linked recessive pathology (6 forms in 12 families with 20 affected). The main part of cases of autosomal recessive pathology were found in separate families and were not observed during previous medical-genetic studies in Uzbekistan. Three autosomal recessive conditions are probably new forms of hereditary pathology. The important role of assortative matings in manifestation of rare autosomal recessive genes in Uzbek population is discussed.  相似文献   

19.
A genetic epidemiological study has been performed in five districts of the Republic of Tatarstan, Russia: Arsky, Atninsky, Kukmorsky, Buinsky and Drozhzhanovsky raions. The total size of the population surveyed is 188397 people. Tatars accounted for 77.13% of the population analyzed (145466 people) and were represented by two main ethnic groups: Kazan Tatars and Mishars. The medical genetic study encompassed the total population of the districts, irrespective of ethnicity, and was carried out according to the standard protocol developed in the Laboratory of Genetic Epidemiology of the Research Center for Medical Genetics of the Russian Academy of Medical Sciences. After segregation analysis, the prevalence rates of the main types of monogenic hereditary disorders (MHDs), i.e., autosomal dominant (AD), autosomal recessive (AR), and X-linked diseases, have been calculated for the total population of the five districts and for Tatars alone. The prevalence rates of AD, AR, and X-linked diseases considerably vary in different subpopulations. The largest difference in the MHD prevalence rate has been found between the rural and urban populations. The overall prevalence rate of MHDs was one patient per 293 urban residents and populations and one patient per 134 rural residents, with a wide variation between subpopulations, from 1: 83 people in the rural population of Atninsky raion to 1: 351 people in the town of Kukmor. Comparison of the MHD prevalence rate in Tatars with those in populations surveyed earlier has shown that the characteristics of the load of MHDs in the Tatar population are similar to those in some districts of the republics of Bashkortostan, Udmurtia, Mari El, and Chuvachia. In Russian populations of European Russia, the MHD prevalence rates are substantially lower. Correlation analysis has shown high (r = 0.5?C0.9) significant correlations between the local inbreeding (a), the im index, the random inbreeding (F ST), and the AD and AR prevalence rates in the Tatar population. This analysis has demonstrated that genetic drift is the main population dynamic factor determining the MHD load in the Tatar population.  相似文献   

20.
The diversity of autosomal recessive (AR) diseases was studied in six Russian regions: the Kirov, Kostroma, and Bryansk oblasts; Adygea Republic; Krasnodar krai, and Marii El Republic (in the latter region, the Mari and Russian ethnic groups were studied separately). In total, more than 1.5 million people were studied. The spectrum of the AR diseases included 101 nosological forms; the total number of the affected subjects was 942. For all diseases, the prevalence rate in the region where they were found and the mean prevalence rate in the total population studied were calculated. Only seven AR diseases had prevalence rates of 1:50,000 or higher; however, this group contained about 50% of the patients. About half of the AR diseases (66) had an extremely low prevalence rate (1:877,483). Eleven diseases exhibit local accumulation. Accumulation of some or other diseases was only observed in four out of seven populations studied (Marii El, Adygea, and the Kirov and Bryansk oblasts). To determine the cause of the local accumulation of some diseases in populations, correlation analysis of the dependence of accumulation of hereditary diseases on the genetic structure of the populations studied was performed. The accumulation coefficients for AR and autosomal dominant (AD) diseases and the mean values of random inbreeding (Fst) in individual districts were calculated for all populations studied. The coefficients of the Spearman rank correlation between the accumulation coefficient and random inbreeding (Fst) were 0.68 and 0.86 for the AD and AR diseases, respectively. The correlation between the accumulation of AD and AR diseases was 0.86. The relationships found indicate that the diversity of AD and AR diseases, as well as the genetic load, distinctly depended on the population genetic structure and were largely determined by genetic drift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号