首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Mitochondria from Jerusalem artichoke (Helianthus tuberosus) tubers and Arum maculatum spadices caused a quenching of the fluorescence of 9-aminoacridine when mixed in a low-cation medium (approximately 1 mM-K+) and addition of chelators further decreased the fluorescence. Salts released the quenching of the 9-aminoacridine fluorescence and the efficiency of the release appeared to be mainly dependent on the valency of the cation (C3+ greater than C2+ greater than C+). 2. The results are consistent with the theory of charge screening and demonstrate that 9-aminoacridine is a convenient probe of the behaviour of cations on the membranes of mitochondria and in the diffuse layer associated with these membranes. 3. The concentration of salt required to achieve half-maximal release of quenching of 9-aminoacridine fluorescence was proportional to the concentration of mitochondria in the solution and theoretical considerations show this effect to be inherent in the Gouy-Chapman theory. 4. 9-Aminoacridine was removed from the bulk of the solution by the mitochondria to a far greater extent than was Na+ or K+, which is suggested to be due to the formation of bi- and poly-valent cations by aggregation of 9-aminoacridine molecules in the diffuse layer. This would have implications for the use of 9-aminoacridine to determine delta pH across membranes. 5. Jerusalem-artichoke mitochondria removed from 9-aminoacridine and Ca2+ from the bulk of the solution and required more ions to screen the membranes than did an equal concentration (mg of protein/ml) of Arum mitochondria, indicating that Jerusalem-artichoke mitochondria contain more negative charges per mg of protein.  相似文献   

2.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

3.
The external alkalinisation delta pHe, or the rate of oxygen evolution vO2, of a suspension of envelope-free chlorplasts was correlated with their internal acidification, estimated from the transmembrane delta pHei. Knowing the external buffer value, the concentration of the total protons moved Hi was calculated from the delta pHe, measured with a glass electrode ([Hi] was also obtained from vO2), and the free proton concentration [Hi+] was determined from delta pHei, measured with 9-aminoacridine. This gives a ratio gamma i = theta [Hi]/theta [Hi+], which is independent of the thylakoids internal volume. Within a large pHi range, scanned by varying the light intensity, gamma i was kept reasonably constant; it was hardly sensitive to pHi. This apparent invariability implies a continuous change of the internal buffer value beta i with pHi, since beta i/gamma i = -2.3.....10pHi, a relationship which inlcudes neither the total concentration of protonizable groups [Ai] nor pKi. As gamma i approximately Ki[Ai]/(Ki + [Hi+i]2, to keep gamma i constant when pHi drops, pKi and [Ai] must increase. This may be achieved by a progressive unmasking of anionic functions, initially inaccessible in the membrane. The relative slowness of this process may explain why gamma i calculated from the initial kinetics was sometimes smaller in high than in low light, where it always equalled that measured from the steady-state amplitude at all intensities. A small deficit of [Hi+] deduced from what could have been expected from delta pHe may reflect a limited binding of protons in the membrane itself, about 1 H+ for 30--130 chlorophylls (gamma i could be between 70 and 240, more frequently around 100); these numbers varied depending on the samples, but were constant for a given preparation.  相似文献   

4.
Jan W.T. Fiolet  Karel Van Dam 《BBA》1973,325(2):230-239
1. The inhibitory action of tetraphenylboron, a lipid-soluble anion, on the proton uptake, the photophosphorylation and the light-induced quenching of the fluorescence of 9-aminoacridine by spinach chloroplasts was studied.2. The inhibition of the three processes by tetraphenylboron was transient; the proton uptake was affected to a much smaller extent than either the photophosphorylation or the fluorescence quenching.3. The inhibitory effects of tetraphenylboron on the proton uptake and the fluorescence quenching of 9-aminoacridine were qualitatively the same in CF1-depleted chloroplasts, that were recoupled with N,N′-dicyclohexylcarbodiimide (DCCD).4. The reversal of the fluorescence quenching of 9-aminoacridine upon addition of tetraphenylboron in the light was found to be very fast, being completed within the response time of the apparatus.5. The presence of tetraalkylammonium salts in the incubation medium prevented the inhibitory effect of tetraphenylboron.6. Tetraphenylboron disappeared from the chloroplast suspension in a light-dependent irreversible way; in the dark no ‘ptake’ of tetraphenylboron could be detected.7. The effects of tetraphenylboron may be explained by the presence of groups with a high affinity for tetraphenylboron in the membrane; these groups become protonated upon illumination of the chloroplasts.  相似文献   

5.
1. A reversible light-induced enhancement of the fluorescence of a "hydrophobic fluorophore", 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1'-ethylene-2,2'-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response. 2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl(5-10mM), as well as the ionophores nigericin and gramicidin-D (both at 5 - 10(-8)M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a "high energy intermediate". The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the "high energy state" of the thylakoid membrane rather than a terminal phosphorylation step. 3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fllorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence. Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate of Diquat catalyzed electron flow and is the first "non-amine" fluorescence probe utilized for this purpose in chloroplasts.  相似文献   

6.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

7.
D.L. Vandermeulen  Govindjee 《BBA》1976,449(3):340-356
1. A reversible light-induced enhancement of the fluorescence of a “hydrophobic fluorophore”, 12-(9-anthroyl)-stearic acid (anthroyl stearate), is observed with chloroplasts supporting phenazine methosulfate, cyclic or 1,1′-ethylene-2,2′-dipyridylium dibromide (Diquat) pseudo-cyclic electron flow; no fluorescence change is observed when methyl viologen or ferricyanide are used as electron acceptors. The stearic acid moiety of anthroyl stearate is important for its localization and fluorescence response in the thylakoid membrane, since structural analogs of anthroyl stearate lacking this group do not show the same response.

2. This effect is decreased under phosphorylating conditions (presence of ADP, Pi, Mg2+), and completely inhibited by the uncoupler of phosphorylation NH4Cl (5–10 mM), as well as the ionophores nigericin and gramicidin-D (both at 5 · 10−8 M). The MgCl2 concentration dependence of the anthroyl stearate enhancement effect is identical to that previously observed for cyclic photophosphorylation, as well as for the formation of a “high energy intermediate”. The anthroyl stearate fluorescence enhancement is inhibited by increasing concentrations of ionophores in parallel with the decrease in ATP synthesis, but is essentially unaffected by specific inhibitors (Dio-9 and phlorizin) of photophosphorylation; thus, it appears that anthroyl stearate monitors a component of the “high energy state” of the thylakoid membrane rather than a terminal phosphorylation step.

3. The light-induced anthroyl stearate fluorescence enhancement is suggested to monitor a proton gradient in the energized chloroplast because (a) similar enhancement can be produced by sudden injection of hydrogen ions in a solution of anthroyl stearate; (b) when the proton gradient is dissipated by gramicidin or nigericin light-induced anthroyl stearate fluorescence is eliminated; (c) when the proton gradient is dissipated by tetraphenylboron, light-induced anthroyl stearate fluorescence decreases, and (d) light-induced anthroyl stearate fluorescence change as a function of pH is qualitatively similar to that observed with other probes for a proton gradient (e.g. 9-aminoacridine). Furthermore, anthroyl stearate does not monitor H+ uptake per se because (a) the pH dependence of H+ transport is different from that of the anthroyl stearate fluorescence change, and (b) tetraphenylboron, which does not inhibit H+ uptake, reduces anthroyl stearate fluorescence.

Thus, anthroyl stearate appears to be a useful probe of a proton gradient supported by phenazine methosulfate or Diquat catalyzed electron flow and is the first “non-amine” fluorescence probe utilized for this purpose in chloroplasts.  相似文献   


8.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

9.
G.F.W. Searle  J. Barber 《BBA》1978,502(2):309-320
The addition of 9-aminoacridine monohydrochloride to carboxymethyl-cellulose particles or azolectin liposomes suspended in a low cation medium results in a quenching of its fluorescence. This quenching can be released on the addition of cations. The effectiveness of cations is related only to their valency in the series of salts tested, being monovalent < divalent < trivalent, and is independent of the associated anions. These results indicate an electrical rather than a chemical effect, and the relative effectiveness of the various cations can be predicted by the application of classical electrical double layer theory. Fluorescence quenching can also be released on protonation of the fixed negatively charged ionisable groups, and the quenching release curve follows the ionisation curve of these groups.We postulate that when 9-aminoacridine molecules are in the electrical diffuse layer adjacent to the charged surface their fluorescence is quenched, probably due to aggregate formation. As cations are added the 9-aminoacridine concentration at the surface falls as it is displaced into the bulk solution, where it shows a high fluorescence yield with a fluorescence lifetime of 16.3 ns. The fluorescence quenching is associated with an absorbance decrease, which is pronounced with carboxymethyl-cellulose particles and can probably be attributed to self-shielding.The negative charges carried by lipoprotein membranes are primarily due to carboxyl and phosphate groups. Therefore these results with carboxymethyl-cellulose (carboxyl) and azolectin (phosphate) support our earlier suggestion that 9-aminoacridine may be used to probe the electrical double layer associated with negatively charged biological membranes.  相似文献   

10.
The addition of 9-aminoacridine monohydrochloride to carboxymethyl-cellulose particles or azolectin liposomes suspended in a low cation medium results in a quenching of its fluorescence. This quenching can be released on the addition of cations. The effectiveness of cations is related only to their valency in the series of salts tested, being monovalent less than divalent less than trivalent, and is independent of the associated anions. These results indicate an electrical rather than a chemical effect, and the relative effectiveness of the various cations can be predicted by the application of classical electrical double layer theory. Fluorescence quenching can also be released on protonation of the fixed negatively charged ionisable groups, and the quenching release curve follows the ionisation curve of these groups. We postulate that when 9-aminoacridine molecules are in the electrical diffuse layer adjacent to the charged surface their fluorescence is quenched, probably due to aggregate formation. As cations are added the 9-aminoacridine concentration at the surface falls as it is displaced into the bulk solution, where it shows a high fluorescence yield with a fluorescence lifetime of 16.3 ns. The fluorescence quenching is associated with an absorbance decrease, which is pronounced with carboxymethyl-cellulose particles and can probably be attributed to self-shielding. The negative charges carried by lipoprotein membranes are primarily due to carboxyl and phosphate groups. Therefore these results with carboxymethyl-cellulose (carboxyl) and azolectin (phosphate) support our earlier suggestion that 9-aminoacridine may be used to probe the electrical double layer associated with negatively charged biological membranes.  相似文献   

11.
Membrane potential (delta psi) and pH difference (delta pH) were simultaneously determined in liposomes using a photodiode array spectrophotometer. By the use of a cyanine dye (DiS-C3(5)) and 9-aminoacridine for delta psi and delta pH probes, respectively, both changes of delta psi and delta pH could be successfully determined by photodiode array spectrometry. Each dye did not disturb the fluorescence spectrum of the other probe when its concentration was lower than 5 microM. The K+-diffusion potential-driven, FCCP(protonophore)-mediated H+-influx process in the K+-loaded liposomes was analyzed by this method. Results indicate that the kinetic behavior of H+ influx changes at a FCCP concentration of approx. 30 nM. The rate of delta pH formation increased quantitatively with increasing concentrations of FCCP up to 30 nM, but was markedly enhanced at higher concentrations, although the maximal delta pH attained was about 3 pH units in any case when a K+-diffusion potential of -180 mV was applied.  相似文献   

12.
Leucine transport into membrane vesicles obtained from Chang liver cells was stimulated by an inward H+ gradient. The stimulatory effect of the proton gradient on the rate of leucine uptake (1 min) was inhibited by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. When the vesicles had been preloaded with a high concentration of KCl, addition of valinomycin stimulated leucine uptake by the vesicles, showing that the leucine transport is dependent on potential gradient. Leucine-coupled H+ accumulation inside the vesicles was confirmed by measuring leucine dependent quenching of the fluorescence of 9-aminoacridine added to medium. These results imply that electrochemical gradient of proton can serve as a driving force for leucine transport across the cell membrane and proton movement is coupled to leucine transport.  相似文献   

13.
An instrumental device is described which allows steady-state kinetic measurements of photophosphorylation at a desired proton gradient which can be maintained throughout the course of the experiment ('delta pH clamp'). This is achieved by electronic regulation of light intensity using the calibrated 9-aminoacridine fluorescence signal as sensor of the gradient. The instrument is suitable for determination of kinetic parameters of the proton-translocating ATPase in isolated envelope-free chloroplasts under defined conditions. At clamped delta pH, phosphorylation as a function of substrate concentration shows Michaelis-Menten kinetics. The true Michaelis constants and the dissociation constants for phosphate and ADP are reported. The Michaelis constants are not affected by the magnitude of the proton gradient in the investigated range. The significance of these results is discussed.  相似文献   

14.
The uptake of 9-aminoacridine is studied in the yeast Saccharomyces cerevisiae by fluorescence and absorbance measurements of the dye. Uptake of the dye proceeds via two pathways. One pathway consists of a diffusion of the non-protonated form. At high pH (7.5) this pathway is the predominant one, and the dye distributes between the cell inner and the medium according to the ratio of the proton concentrations in the two compartments. In other words, at high pH 9-aminoacridine behaves as a probe of the H+ gradient across the yeast cell membrane. At low external pH (4.5) a second pathway is involved. Much greater accumulation ratios for the dye are observed than can be accounted for by the H+ gradient across the membrane. The transport system predominantly responsible for the great accumulation of the dye appears to be inducible, to require metabolic energy and to be saturable. This transport system is competitively inhibited by thiamine, and also by dibenzyldimethylammonium and thiaminedisulfide, two specific inhibitors of the thiamine carrier in the yeast. On the other hand, the thiamine uptake by the yeast cells is competitively inhibited by 9-aminoacridine. In addition, uptake of 9-aminoacridine is greatly reduced in the thiamine transport-negative mutant of S. cerevisiae, PT-R2. It is concluded that at low pH 9-aminoacridine is taken up by yeast via the thiamine carrier of the cell and that, consequently, the dye may be applied as a probe of this transport system.  相似文献   

15.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

16.
(1) Chromatophores were preilluminated in the presence of phenazine methosulphate or diaminodurene, and without phosphorylation substrates; next they were transferred to fresh medium and assayed for light-induced proton uptake, light-induced 9-aminoacridin fluorescence quenching, and photophosphorylation. (2) Preillumination in the presence of phenazine methosulphate or diaminodurene causes an inhibition of the photophosphorylation rate. The presence of ADP + MgCl2 + phosphate, or ADP + MgCl2 + arsenate during preillumination provides full protection against this effect. (3) Preilluminated chromatophores are leaky for protons. The leak is expressed as an accelerated dark decay, and a diminished extent of succinate-supported, light-induced proton uptake. The extent of light-induced 9-aminoacridin fluorescence quenching is also diminished. (4) The proton leak can be closed by oligomycin and by dicyclohexyl carbodiimide (at concentrations similar to those used to inhibit photophosphorylation), but not by aurovertin. Closure of the proton leak results in partial restoration of the photophosphorylation rate. (5) The inhibition of phosphorylation by oligomycin or dicyclohexyl carbodiimide is time-dependent. In untreated chromatophores, the time-dependence is determined by the extent of membrane energization. In preilluminated chromatophores, the time-dependence is determined in addition by the extent to which the proton leaks have been closed. The reasons for this are briefly discussed.  相似文献   

17.
Voltage-dependent proton fluxes in liposomes   总被引:2,自引:0,他引:2  
Liposomes containing buffered KCl were prepared from bacterial lipids, were diluted into K+-free media and were treated with valinomycin to induce the formation of a diffusion potential (delta psi). Upon formation of such a potential, substantial proton influx was observed, as assayed by the quenching of 9-aminoacridine fluorescence. Complete reversal of fluorescence quenching occurred when the potential was collapsed by addition of KCl or when methylamine was added. Studies of proton influx as a function of the theoretical magnitude of the delta psi indicated that the phenomenon occurred only above a delta psi of about -60 mV. Establishment of a Na+ diffusion potential also resulted in proton influx. Treatment of K+-loaded liposomes with N,N'-dicyclohexylcarbodiimide did not reduce the delta psi-dependent proton influx. Moreover, proton influx could be demonstrated upon imposition of a diffusion potential in liposomes prepared from a synthetic lipid. The proton fluxes associated with generation of a diffusion potential in liposomes may complicate studies of reconstituted systems in which proton translocation should occur, and may affect the magnitude of the electrochemical proton gradient that is operant under some conditions.  相似文献   

18.
The influence of mono- (K+) and divalent (Mg2+) cations and protons (pH) on the temperature sensitivity of thylakoid membranes was investigated in three groups of young bean plants (control, heat-acclimated and non-acclimated). Thylakoid-membrane function was monitored by second and millisecond delayed fluorescence and 9-aminoacridine fluorescence quenching. It was established that metal ions at investigated concentrations decreased the thermostability of the photosynthetic parameters — an increase of MgSO4 concentration from 0.1 to 20 mM decreased the temperature of their half-inactivation (T50) by 13°C. At the same time the pH dependence of the thermal stability of these parameters showed a maximum at pH 5.5–6.5. The half-inactivation temperatures of those photosynthetic parameters connected with the ability of the thylakoid membrane to form light-induced proton gradients increased by 6–7°C in the heat-acclimated plants compared with the control. It was assumed that the temperature inactivation of photosynthetic electron transfer and the energization of the thylakoid membrane was determined both by the thermoinduced dissociation of the light-harvesting chlorophyll a/b protein complex from PSII, leading to destruction of the excitation energy transfer to the reaction centres, and by the thermal denaturation of the membrane-protein components. The rate of these processes was probably controlled by the size of the negative surface charge and the viscosity of the thylakoid membrane.Abbreviations 9-AA 9-aminoacridine - DF delayed fluorescence - LHCP light-harvesting chlorophyll a/b protein complex - PSI (II) photosystem I (II) - T50 temperature of 50% inhibition of photosynthetic parameter - Tricine N-[2-hydroxy-1, 1-bis(hydroxymethyl)ethyl] glycine  相似文献   

19.
(1) Chromatophores were preilluminated in the presence of phenazine methosulphate or diaminodurene, and without phosphorylation substrates; next they were transferred to fresh medium and assayed for light-induced proton uptake, light-induced 9-aminoacridin fluorescence quenching, and photophosphorylation.(2) Preillumination in the presence of phenazine methosulphate or diaminodurene causes an inhibition of the photophosphorylation rate. The presence of ADP + MgCl2 + phosphate, or ADP + MgCl2 + arsenate during preillumination provides full protection against this effect.(3) Preilluminated chromatophores are leaky for protons. The leak is expressed as an accelerated dark decay, and a diminished extent of succinate-supported, light-induced proton uptake. The extent of light-induced 9-aminoacridin fluorescence quenching is also diminished.(4) The proton leak can be closed by oligomycin and by dicyclohexyl carbodiimide (at concentrations similar to those used to inhibit photophosphorylation), but not by aurovertin. Closure of the proton leak results in partial restoration of the photophosphorylation rate.(5) The inhibition of phosphorylation by oligomycin or dicyclohexyl carbodiimide is time-dependent. In untreated chromatophores, the time-dependence is determined by the extent of membrane energization. In preilluminated chromatophores, the time-dependence is determined in addition by the extent to which the proton leaks have been closed. The reasons for this are briefly discussed.  相似文献   

20.
Hans-Joachim Weigel 《Planta》1983,159(5):398-403
The effect of short-term heat stress on the tonoplast membrane of lamb's lettuce (Valerianella locusta (L.) Betcke) mesophyll vacuoles has been investigated. The maintainance of a proton concentration difference (δpH) across the tonoplast membrane served as a criterion for the integrity of the vacuoles. After heat treatment, δpH was measured at room temperature using the fluorescent amine, 9-aminoacridine. It was found with this method that thermal damage to isolated vacuoles mainly occurred in the temperature range above 50°C. Compared with this results, the photosynthetic functions of isolated lettuce protoplasts proved to be markedly more thermolabile, e.g. photosynthetic CO2 fixation and light-induced chlorophyll fluorescence were drastically reduced at temperatures between 40° and 50°C. Heating of whole leaves and protoplasts and subsequent isolation of vacuoles showed that tonoplast-membrane integrity is not affected by heat stress in situ up to 45°C. Measurement of 9-aminoacridine fluorescence in protoplasts, which allowed conclusions to be drawn regarding the integrity of the tonoplast membrane in its natural cytoplasmic environment, revealed that heat treatment up to 55°C did not significantly affect vacuolar compartmentation. The data provide evidence that the tonoplast membrane is relatively heat stable compared with photosynthetic membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号