首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MscL is a mechanosensitive channel gated by membrane tension in the lipid bilayer alone. Its structure, known from x-ray crystallography, indicates that it is a homopentamer. Each subunit comprises two transmembrane segments TM1 and TM2 connected by a periplasmic loop. The closed pore is lined by five TM1 helices. We expressed in Escherichia coli and purified two halves of the protein, each containing one of the transmembrane segments. Their electrophysiological activity was studied by the patch-clamp recording upon reconstitution in artificial liposomes. The TM2 moiety had no electrophysiological activity, whereas the TM1 half formed channels, which were not affected by membrane tension and varied in conductance between 50 and 350 pS in 100 mM KCl. Coreconstitution of the two halves of MscL however, yielded mechanosensitive channels having the same conductance as the native MscL (1500 pS), but exhibiting increased sensitivity to pressure. Our results confirm the current view on the functional role of TM1 and TM2 helices in the MscL gating and emphasize the importance of helix-helix interactions for the assembly and functional properties of the channel protein. In addition, the results indicate a crucial role of the periplasmic loop for the channel mechanosensitivity.  相似文献   

2.
The structural domains contributing to ion permeation and selectivity in K channels were examined in inward-rectifier K(+) channels ROMK2 (Kir1.1b), IRK1 (Kir2.1), and their chimeras using heterologous expression in Xenopus oocytes. Patch-clamp recordings of single channels were obtained in the cell-attached mode with different permeant cations in the pipette. For inward K(+) conduction, replacing the extracellular loop of ROMK2 with that of IRK1 increased single-channel conductance by 25 pS (from 39 to 63 pS), whereas replacing the COOH terminus of ROMK2 with that of IRK1 decreased conductance by 16 pS (from 39 to 22 pS). These effects were additive and independent of the origin of the NH(2) terminus or transmembrane domains, suggesting that the two domains form two resistors in series. The larger conductance of the extracellular loop of IRK1 was attributable to a single amino acid difference (Thr versus Val) at the 3P position, three residues in front of the GYG motif. Permeability sequences for the conducted ions were similar for the two channels: Tl(+) > K(+) > Rb(+) > NH(4)(+). The ion selectivity sequence for ROMK2 based on conductance ratios was NH(4)(+) (1.6) > K(+) (1) > Tl(+) (0.5) > Rb(+) (0.4). For IRK1, the sequence was K(+) (1) > Tl(+) (0.8) > NH(4)(+) (0.6) > Rb(+) (0.1). The difference in the NH(4)(+)/ K(+) conductance (1.6) and permeability (0.09) ratios can be explained if NH(4)(+) binds with lower affinity than K(+) to sites within the pore. The relatively low conductances of NH(4)(+) and Rb(+) through IRK1 were again attributable to the 3P position within the P region. Site-directed mutagenesis showed that the IRK1 selectivity pattern required either Thr or Ser at this position. In contrast, the COOH-terminal domain conferred the relatively high Tl(+) conductance in IRK1. We propose that the P-region and the COOH terminus contribute independently to the conductance and selectivity properties of the pore.  相似文献   

3.
Fission Yeast DNA topoisomerase II (165 kD) consists of an enzymatically active 125-kD core, approximately 10-kD NH2-terminal and 30-kD COOH-terminal domains. The question addressed in the present study is what is the role of the topo II termini. Although deletion of either the NH2 or the COOH terminus is viable, deletion of both termini is lethal; the termini share an essential role for viability. We show here that topo II phosphorylation sites are localized in the terminal domains, but dephosphorylated topo II is still active. The topo II terminal sequences are required for nuclear localization; topo II double terminal deletion mutants are deficient for nuclear targeting, whereas wild-type and single deletion mutant topo IIs are transported into the nucleus with different efficiencies. Functional subdomains in the NH2 terminus are further dissected; we identified a 15 amino acid nuclear localization sequence (NLS) which is essential for viability and nuclear localization when the COOH terminus is deleted. This NLS could be substituted with SV-40 large T-antigen NLS. Two other functional subdomains were found; a non-essential acidic stretch which is phosphorylated and apparently enhances the nuclear localization and an essential hydrophilic stretch of unknown function. Motifs similar to these three NH2-terminal subdomains are also found in the COOH terminus. Our results support the possibility that phosphorylation of topo II does not play an essential role in fission yeast.  相似文献   

4.
The alpha subunits of CNG channels of retinal photoreceptors (rod) and olfactory neurons (olf) are proteins that consist of a cytoplasmic NH(2) terminus, a transmembrane core region (including the segments S1-S6), and a cytoplasmic COOH terminus. The COOH terminus contains a cyclic nucleotide monophosphate binding domain NBD) that is linked by the C-linker (CL) to the core region. The binding of cyclic nucleotides to the NBD promotes channel opening by an allosteric mechanism. We examined why the sensitivity to cGMP is 22 times higher in olf than in rod by constructing chimeric channels and determining the [cGMP] causing half maximum channel activity (EC(50)). The characteristic difference in the EC(50) value between rod and olf was introduced by the NH(2) terminus and the core-CL region, whereas the NBD showed a paradoxical effect. The difference of the free energy difference Delta(DeltaG) was determined for each of these three regions with all possible combinations of the other two regions. For rod regions with respect to corresponding olf regions, the open channel conformation was destabilized by the NH(2) terminus (Delta(DeltaG) = -1.0 to -2.0 RT) and the core-CL region (Delta(DeltaG) = -2.0 to -2.9 RT), whereas it was stabilized by the NBD (Delta(DeltaG) = 0.3 to 1.1 RT). The NH(2) terminus deletion mutants of rod and olf differed by Delta(DeltaG) of only 0.9 RT, whereas the wild-type channels differed by the much larger value of 3.1 RT. The results show that in rod and olf, the NH(2) terminus, the core-CL region, and the NBD differ by characteristic Delta(DeltaG) values that do not depend on the specific composition of the other two regions and that the NH(2) terminus generates the main portion of Delta(DeltaG) between the wild-type channels.  相似文献   

5.
The voltage-sensing domains in voltage-gated K(+) channels each contain four transmembrane (TM) segments, termed S1 to S4. Previous scanning mutagenesis studies suggest that S1 and S2 are amphipathic membrane spanning alpha-helices that interface directly with the lipid membrane. In contrast, the secondary structure of and/or the environments surrounding S3 and S4 are more complex. For S3, although the NH(2)-terminal part displays significant helical character in both tryptophan- and alanine-scanning mutagenesis studies, the structure of the COOH-terminal portion of this TM is less clear. The COOH terminus of S3 is particularly interesting because this is where gating modifier toxins like Hanatoxin interact with different voltage-gated ion channels. To further examine the secondary structure of the COOH terminus of S3, we lysine-scanned this region in the drk1 K(+) channel and examined the mutation-induced changes in channel gating and Hanatoxin binding affinity, looking for periodicity characteristic of an alpha-helix. Both the mutation-induced perturbation in the toxin-channel interaction and in gating support the presence of an alpha-helix of at least 10 residues in length in the COOH terminus of S3. Together with previous scanning mutagenesis studies, these results suggest that, in voltage-gated K(+) channels, the entire S3 segment is helical, but that it can be divided into two parts. The NH(2)-terminal part of S3 interfaces with both lipid and protein, whereas the COOH-terminal part interfaces with water (where Hanatoxin binds) and possibly protein. A conserved proline residue is located near the boundary between the two parts of S3, arguing for the presence of a kink in this region. Several lines of evidence suggest that these structural features of S3 probably exist in all voltage-gated ion channels.  相似文献   

6.
The Sec61 complex performs a dual function in protein translocation across the RER, serving as both the high affinity ribosome receptor and the translocation channel. To define regions of the Sec61 complex that are involved in ribosome binding and translocation promotion, ribosome-stripped microsomes were subjected to limited digestions using proteases with different cleavage specificities. Protein immunoblot analysis using antibodies specific for the NH(2) and COOH terminus of Sec61alpha was used to map the location of proteolysis cleavage sites. We observed a striking correlation between the loss of binding activity for nontranslating ribosomes and the digestion of the COOH- terminal tail or cytoplasmic loop 8 of Sec61alpha. The proteolyzed microsomes were assayed for SRP-independent translocation activity to determine whether high affinity binding of the ribosome to the Sec61 complex is a prerequisite for nascent chain transport. Microsomes that do not bind nontranslating ribosomes at physiological ionic strength remain active in SRP-independent translocation, indicating that the ribosome binding and translocation promotion activities of the Sec61 complex do not strictly correlate. Translocation-promoting activity was most severely inhibited by cleavage of cytosolic loop 6, indicating that this segment is a critical determinant for this function of the Sec61 complex.  相似文献   

7.
Calcium-dependent gating of large-conductance calcium-activated potassium (BKCa) channels is mediated by the intracellular carboxyl terminus, which contains two domains of regulator of K+ conductance (RCK). In mammalian BKCa channels, the two RCK domains are separated by a protein segment of 101 residues that is poorly conserved in evolution and predicted to have no regular secondary structures. We investigated the functional importance of this loop using a series of deletion mutations. We found that the length, rather than the specific sequence at the central region of the segment, is critical for the functionality of the channel. As the length of the loop is progressively shorted, the conductance-voltage relationship gradually shifts toward more positive voltages with a minimum length of 70 amino acids, in an apparent response to increased tension within the loop. Thus, the functional activity of the BKCa channel can be modulated by altering the tension of this loop region.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator is a Cl(-) channel that belongs to the family of ATP-binding cassette proteins. The CFTR polypeptide comprises two transmembrane domains, two nucleotide binding domains (NBD1 and NBD2), and a regulatory (R) domain. Gating of the channel is controlled by kinase-mediated phosphorylation of the R domain and by ATP binding, and, likely, hydrolysis at the NBDs. Exon 13 of the CFTR gene encodes amino acids (aa's) 590-830, which were originally ascribed to the R domain. In this study, CFTR channels were severed near likely NH(2)- or COOH-terminal boundaries of NBD1. CFTR channel activity, assayed using two-microelectrode voltage clamp and excised patch recordings, provided a sensitive measure of successful assembly of each pair of channel segments as the sever point was systematically shifted along the primary sequence. Substantial channel activity was taken as an indication that NBD1 was functionally intact. This approach revealed that the COOH terminus of NBD1 extends beyond aa 590 and lies between aa's 622 and 634, while the NH(2) terminus of NBD1 lies between aa's 432 and 449. To facilitate biochemical studies of the expressed proteins, a Flag epitope was added to the NH(2) termini of full length CFTR, and of CFTR segments truncated before the normal COOH terminus (aa 1480). The functionally identified NBD1 boundaries are supported by Western blotting, coimmunoprecipitation, and deglycosylation studies, which showed that an NH(2)-terminal segment representing aa's 3-622 (Flag3-622) or 3-633 (Flag3-633) could physically associate with a COOH-terminal fragment representing aa's 634-1480 (634-1480); however, the latter fragment was glycosylated to the mature form only in the presence of Flag3-633. Similarly, 433-1480 could physically associate with Flag3-432 and was glycosylated to the mature form; however, 449-1480 protein seemed unstable and could hardly be detected even when expressed with Flag3-432. In excised-patch recordings, all functional severed CFTR channels displayed the hallmark characteristics of CFTR, including the requirement of phosphorylation and exposure to MgATP for gating, ability to be locked open by pyrophosphate or AMP-PNP, small single channel conductances, and high apparent affinity of channel opening by MgATP. Our definitions of the boundaries of the NBD1 domain in CFTR are supported by comparison with the solved NBD structures of HisP and RbsA.  相似文献   

9.
Cl- interference with the epithelial Na+ channel ENaC   总被引:2,自引:0,他引:2  
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.  相似文献   

10.
Intracellular ATP and membrane-associated phosphatidylinositol phospholipids, like PIP(2) (PI(4,5)P(2)), regulate the activity of ATP-sensitive K(+) (K(ATP)) and Kir1.1 channels by direct interaction with the pore-forming subunits of these channels. We previously demonstrated direct binding of TNP-ATP (2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)-ATP) to the COOH-terminal cytosolic domains of the pore-forming subunits of Kir1.1 and Kir6.x channels. In addition, PIP(2) competed for TNP-ATP binding on the COOH termini of Kir1.1 and Kir6.x channels, providing a mechanism that can account for PIP(2) antagonism of ATP inhibition of these channels. To localize the ATP-binding site within the COOH terminus of Kir1.1, we produced and purified maltose-binding protein (MBP) fusion proteins containing truncated and/or mutated Kir1.1 COOH termini and examined the binding of TNP-ATP and competition by PIP(2). A truncated COOH-terminal fusion protein construct, MBP_1.1CDeltaC170, containing the first 39 amino acid residues distal to the second transmembrane domain was sufficient to bind TNP-ATP with high affinity. A construct containing the remaining COOH-terminal segment distal to the first 39 amino acid residues did not bind TNP-ATP. Deletion of 5 or more amino acid residues from the NH(2)-terminal side of the COOH terminus abolished nucleotide binding to the entire COOH terminus or to the first 49 amino acid residues of the COOH terminus. PIP(2) competed TNP-ATP binding to MBP_1.1CDeltaC170 with an EC(50) of 10.9 microm. Mutation of any one of three arginine residues (R188A/E, R203A, and R217A), which are conserved in Kir1.1 and K(ATP) channels and are involved in ATP and/or PIP(2) effects on channel activity, dramatically reduced TNP-ATP binding to MBP_1.1DeltaC170. In contrast, mutation of a fourth conserved residue (R212A) exhibited slightly enhanced TNP-ATP binding and increased affinity for PIP(2) competition of TNP-ATP (EC(50) = 5.7 microm). These studies suggest that the first 39 COOH-terminal amino acid residues form an ATP-PIP(2) binding domain in Kir1.1 and possibly the Kir6.x ATP-sensitive K(+) channels.  相似文献   

11.
Since we first reported (DeAngelis, P. L., Papaconstantinou, J., and Weigel, P. H. (1993) J. Biol. Chem. 268, 19181-19184) the cloning of the hyaluronan (HA) synthase from Streptococcus pyogenes (spHAS), numerous membrane-bound HA synthases have been discovered in both prokaryotes and eukaryotes. The HASs are unique among enzymes studied to date because they mediate 6-7 discrete functions in order to assemble a polysaccharide containing hetero-disaccharide units and simultaneously effect translocation of the growing HA chain through the plasma membrane. To understand how the relatively small spHAS performs these various functions, we investigated the topological organization of the protein utilizing fusion analysis with two reporter enzymes, alkaline phosphatase and beta-galactosidase, as well as several other approaches. From these studies, we conclude that the NH2 terminus and the COOH terminus, as well as the major portion of a large central domain are localized intracellularly. The first two predicted membrane domains were confirmed to be transmembrane domains and give rise to a very small extracellular loop that is inaccessible to proteases. Several regions of the large internal central domain appear to be associated with, but do not traverse, the membrane. Following the central domain, there are two additional transmembrane domains connected by a second small extracellular loop that also is inaccessible to proteases. The COOH-terminal approximately 25% of spHAS also contains a membrane domain that does not traverse the membrane and may contain extensive re-entrant loops or amphipathic helices. Numerous membrane associations of this latter COOH-terminal region and the central domain may be required to create a pore-like structure through which a growing HA chain can be extruded to the cell exterior. Based on the high degree of similarity among Class I HAS family members, these enzymes may have a similar topological organization for their spHAS-related domains.  相似文献   

12.
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150(Glued) and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH(2)-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH(2) and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips.  相似文献   

13.
We studied the sequential topology of the NH(2) and COOH termini of apoB during translocation by expressing, in Chinese hamster ovary (CHO) and HepG2 cells, an apoB42 construct with c-Myc and hemagglutinin (HA) tags at 2 and 41% (relative to apoB100) of its amino acid sequence. We conducted similar studies using monoclonal antibodies against the NH(2) and COOH termini of apoB100 in HepG2 cells. After radiolabeling, microsomes were immunoisolated from transfected CHO cells using anti-c-Myc or anti-HA antibodies. Throughout a 60-min chase in the presence of N-acetyl-leucyl-norleucinal, more than 90% of microsomes were isolated by anti-HA antibodies, whereas less than 10% were isolated by anti-c-Myc antibodies. Proteinase K digestion of total microsomes consistently generated two fragments ( approximately 70 and approximately 120 kDa) of apoB42 containing the NH(2) terminus throughout the chase; no fragments containing the COOH terminus were detected. Immunofluorescent studies of transfected CHO cells were consistent with results from the labeling studies. Essentially identical results were obtained from pulse-chase studies in both native and apoB42-transfected HepG2 cells. The present studies support a model in which, in the absence of adequate core lipid synthesis, there is partial translocation of apoB leading to cytosolic exposure, ubiquitination, and proteasomal degradation directly from the original translocation channel.  相似文献   

14.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

15.
16.
The enzymatic domains of the avian retrovirus polymerase (pol) gene have been mapped by the use of peptide antibodies and COOH-terminal amino acid analysis. The processed pol beta polypeptide is cleaved in vivo to yield alpha and pp32. Rabbit antibodies were directed against synthetic peptides whose sequence was deduced from the known pol sequence of Rous sarcoma virus, Prague C (Schwartz, D.E., Tizard, R., and Gilbert, W. (1983) Cell 32, 853-869). The RNase H active site of pol was located in the NH2-terminal region of the alpha DNA polymerase subunit. The COOH terminus of the alpha subunit was found to be immediately adjacent to the NH2 terminus of the pp32 pol protein. COOH-terminal amino acid analysis of pp32 revealed that this protein is also processed. From the deduced amino acid sequence of pol, it appears likely that pol encodes an additional 4100-dalton polypeptide located at its extreme COOH terminus. The enzymatic domains on beta appear to map in the following order: RNase H-DNA polymerase-DNA endonuclease. Hydrophilicity analysis and secondary structure predictions of wild type Rous sarcoma virus pol products and mutated pp32 possessing single amino acid changes permit further structural evaluation of the multifunctional pol protein.  相似文献   

17.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

18.
The molecular architecture of the NH(2) and COOH termini of the prokaryotic potassium channel KcsA has been determined using site-directed spin-labeling methods and paramagnetic resonance EPR spectroscopy. Cysteine mutants were generated (residues 5-24 and 121-160) and spin labeled, and the X-band CW EPR spectra were obtained from liposome-reconstituted channels at room temperature. Data on probe mobility (DeltaHo(-1)), accessibility parameters (PiO(2) and PiNiEdda), and inter-subunit spin-spin interaction (Omega) were used as structural constraints to build a three-dimensional folding model of these cytoplasmic domains from a set of simulated annealing and restrained molecular dynamics runs. 32 backbone structures were generated and averaged using fourfold symmetry, and a final mean structure was obtained from the eight lowest energy runs. Based on the present data, together with information from the KcsA crystal structure, a model for the three-dimensional fold of full-length KcsA was constructed. In this model, the NH(2) terminus of KcsA forms an alpha-helix anchored at the membrane-water interface, while the COOH terminus forms a right-handed four-helix bundle that extend some 40-50 A towards the cytoplasm. Functional analysis of COOH-terminal deletion constructs suggest that, while the COOH terminus does not play a substantial role in determining ion permeation properties, it exerts a modulatory role in the pH-dependent gating mechanism.  相似文献   

19.
Postsynaptic density-95 (PSD-95/SAP-90) is a palmitoylated peripheral membrane protein that scaffolds ion channels at excitatory synapses. To elucidate mechanisms for postsynaptic ion channel clustering, we analyzed the cellular trafficking of PSD-95. We find that PSD-95 transiently associates with a perinuclear membranous compartment and traffics with vesiculotubular structures, which migrate in a microtubule-dependent manner. Trafficking of PSD-95 with these vesiculotubular structures requires dual palmitoylation, which is specified by five consecutive hydrophobic residues at the NH(2) terminus. Mutations that disrupt dual palmitoylation of PSD-95 block both ion channel clustering by PSD-95 and its synaptic targeting. Replacing the palmitoylated NH(2) terminus of PSD-95 with alternative palmitoylation motifs at either the NH(2) or COOH termini restores ion channel clustering also induces postsynaptic targeting, respectively. In brain, we find that PSD-95 occurs not only at PSDs but also in association with intracellular smooth tubular structures in dendrites and spines. These data imply that PSD-95 is an itinerant vesicular protein; initial targeting of PSD-95 to an intracellular membrane compartment may participate in postsynaptic ion channel clustering by PSD-95.  相似文献   

20.
Clostridium perfringens enterotoxin is a common cause of food-borne and antibiotic-associated diarrhea. The toxin's receptors on intestinal epithelial cells include claudin-3 and -4, members of a large family of tight junction proteins. Toxin-induced cytolytic pore formation requires residues in the NH(2)-terminal half, whereas residues near the COOH terminus are required for binding to claudins. The claudin-binding COOH-terminal domain is not toxic and is currently under investigation as a potential drug absorption enhancer. Because claudin-4 is overexpressed on some human cancers, the toxin is also being investigated for targeting chemotherapy. Our aim was to solve the structure of the claudin-binding domain to advance its therapeutic applications. The structure of a 14-kDa fragment containing residues 194 to the native COOH terminus at position 319 was solved by x-ray diffraction to a resolution of 1.75A. The structure is a nine-strand beta sandwich with previously unappreciated similarity to the receptor-binding domains of several other toxins of spore-forming bacteria, including the collagen-binding domain of ColG from Clostridium histolyticum and the large Cry family of toxins (including Cry4Ba) of Bacillus thuringiensis. Correlations with previous studies suggest that the claudin-4 binding site is on a large surface loop between strands beta8 and beta9 or includes these strands. The sequence that was crystallized (residues 194-319) binds to purified human claudin-4 with a 1:1 stoichiometry and affinity in the submicromolar range similar to that observed for binding of native toxin to cells. Our results provide a structural framework to advance therapeutic applications of the toxin and suggest a common ancestor for several receptor-binding domains of bacterial toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号