首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ overaccumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p. calcium influx; calcium signal; galactose; glucose phosphate  相似文献   

2.
Previous experiments have evidenced that calcium is functionallyimplicated in glycine uptake by pulvinar motor cells of Mimosapudica L. The present data show that compounds having anticalmodulinproperties, compound 48/80 and the sulfonamide W-7, inhibitedthe amino acid uptake suggesting that a step in this processmay be regulated by calmodulin. H+ excretion by the tissuesand transmembrane potential of the motor cells were not modifiedby these compounds, thus showing that the inhibition of aminoacid uptake was not an indirect consequence of a decrease inthe proton motive force energizing the glycine H+ cotransport.Therefore, the data argue for the implication of calmodulinin a specific Ca2+-regulated reaction. (Received March 2, 1994; Accepted May 6, 1994)  相似文献   

3.
We have investigated Ca2+ activity during pollen germinationand the possibility that it may be responding to a phosphoinositidesignal transduction pathway, by employing inhibitors of Ca2+channels (verapamil and TMB-8), EGTA as a Ca2+ scavenger andthe inositol 1-phosphatase inhibitor lithium chloride. We havefound that at least two Ca2+ pools are utilized during pollengermination. Influx of extracellular Ca2+ appears to be necessaryfor the germination of apple and tobacco pollen, but it doesnot appear to be required for the germination of potato pollen.Conversely, activation of intracellularly stored Ca2+ was necessaryfor optimal germination of all three pollen species. LiCI hadstrong effects on pollen germination. At 5 mM LiCI, pollen germinationwas inhibited by 78% for apple, 84% for tobacco, and 74% forpotato. Li+ inhibition was overcome by the addition of Ca2+,which restores germination of all three species to 85–100%of that observed in controls, myo-lnositol also partially overcomesLi+ inhibition of pollen germination, thus providing some evidencefor a link between Li+ inhibition and Ca2+ rescue, myo-lnositolrescue of Li+ inhibition was most effective for potato pollen.Chlorotetracycline (CTC) spectroscopy revealed a higher levelof membrane-Ca2+ in Li + -treated pollen grains than in controls,and the short pollen tubes which did emerge did not accumulatemembrane-associated Ca2+. The results suggest that Li+ inhibitionmay interfere with the release (activation) or partitioningof membrane-Ca2+ during pollen germination and that this Ca2+activity may be responding, at least in part, with a phosphoinositidesignal transduction pathway. Key words: Pollen germination, lithium inhibition, calcium, inositol, calcium inhibitors  相似文献   

4.
Malignant hyperthermia (MH) is a potentially fatal pharmacogenetic syndrome caused by exposure to halogenated volatile anesthetics and/or depolarizing muscle relaxants. We have measured intracellular Ca2+ concentration ([Ca2+]i) using double-barreled, Ca2+-selective microelectrodes in myoballs prepared from skeletal muscle of MH-susceptible (MHS) and MH-nonsusceptible (MHN) swine. Resting [Ca2+]i was approximately twofold in MHS compared with MHN quiescent myoballs (232 ± 35 vs. 112 ± 11 nM). Treatment of myoballs with caffeine or 4-chloro-m-cresol (4-CmC) produced an elevation in [Ca2+]i in both groups; however, the concentration required to cause a rise in [Ca2+]i elevation was four times lower in MHS than in MHN skeletal muscle cells. Incubation of MHS cells with the fast-complexing Ca2+ buffer BAPTA reduced [Ca2+]i, raised the concentration of caffeine and 4-CmC required to cause an elevation of [Ca2+]i, and reduced the amount of Ca2+ release associated with exposure to any given concentration of caffeine or 4-CmC to MHN levels. These results suggest that the differences in the response of MHS skeletal myoballs to caffeine and 4-CmC may be mediated at least in part by the chronic high resting [Ca2+]i levels in these cells. calcium homeostasis; 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid  相似文献   

5.
Inoue, H. and Katoh, Y. 1987. Calcium inhibitsion-stimulatedstomatal opening in epidermal strips of Commelina communis L.—J.exp. Bot. 38: 142–149. Ca2+ suppressed both the ion-stimulated stomatal opening andH+ extrusion of pre-illuminated epidermal strips isolated fromCommelina communis L. In the absence of Ca2+, the rate of H+release was 18 nmol H+ cm–2 h–1 per epidermal stripunit area in 150 mol m–3 KCL at pH 7?4. Half-maximum inhibitionof stomatal opening was observed with 220 mmol m–3 ofCa2+. The hexavalent dye, ruthenium red, showed concentration-dependentprevention of the inhibition by Ca2+ of the ion-stimulated stomatalopening. The effect of ruthenium red was non-competitive, andthe K1 for the calcium inhibition was found to be 3?6 mmol m–3.The calcium inhibition of H+ extrusion was also prevented byruthenium red. These results suggest that Ca2+ inhibits theactivity of electrogenic H+ translocating ATPase of the guardcell plasma membrane and leads to the suppression of stomatalopening. Key words: Calcium, Commelina communis, ruthenium red, stomata  相似文献   

6.
Adenosine 5'-cyclic diphosphoribose [cyclicADP-ribose (cADPR)], a metabolite ofNAD+ that promotesCa2+ release from sea urchin egghomogenates and microsomal fractions, has been proposed to act as anendogenous agonist of Ca2+ releasein sea urchin eggs. We describe experiments showing that a microsomalfraction isolated from Tetrapigusnyger sea urchin eggs displayedCa2+-selective single channelswith conductances of 155.0 ± 8.0 pS in asymmetricCs+ solutions and 47.5 ± 1.1 pS in asymmetric Ca2+ solutions.These channels were sensitive to stimulation byCa2+, ATP, and caffeine, but notinositol 1,4,5-trisphosphate, and were inhibited by ruthenium red. Thechannels were also activated by cADP-ribose in aCa2+-dependent fashion. Calmodulinand Mg2+, but not heparin,modulated channel activity in the presence of cADP-ribose. We proposethat these Ca2+ channelsconstitute the intracellularCa2+-inducedCa2+ release pathway that isactivated by cADP-ribose in sea urchin eggs.

  相似文献   

7.
We used theCa2+-sensitive fluorescent dyefura 2, together with measurements of intracellularD-myo-inositol1,4,5-trisphosphate [Ins(1,4,5)P3],to assess the inhibitory effects of caffeine on signal transduction viaG protein-coupled receptor pathways in isolated rat mandibular salivaryacinar cells. ACh, norepinephrine (NE), and substance P (SP) all evokedsubstantial increases in the intracellular freeCa2+ concentration([Ca2+]i).Responses to ACh and NE were markedly inhibited by prior application of20 mM caffeine. The inhibitory effect of caffeine was not reproduced byphosphodiesterase inhibition with IBMX or addition of cell-permeantdibutyryl cAMP. In contrast to the ACh and NE responses, the[Ca2+]iresponse to SP was unaffected by caffeine. Despite this, SP and AChappeared to mobilize Ca2+ from acommon intracellular pool. Measurements of agonist-induced changes inIns(1,4,5)P3levels confirmed that caffeine inhibited the stimulus-response couplingpathway at a point beforeIns(1,4,5)P3 generation. Caffeine did not, however, inhibit[Ca2+]iresponses evoked by direct activation of G proteins with 40 mMF. These data show thatcaffeine inhibits G protein-coupled signal transduction in these cellsat some element that is common to the muscarinic and -adrenergicsignaling pathways but is not shared by the SP signaling pathway. Wesuggest that this element might be a specific structural motif on the Gprotein-coupled muscarinic and -adrenergic receptors.  相似文献   

8.
High concentrations of cytosolic Na+ ions induce the time-dependent formation of an inactive state of the Na+/Ca2+ exchanger (NCX), a process known as Na+-dependent inactivation. NCX activity was measured as Ca2+ uptake in fura 2-loaded Chinese hamster ovary (CHO) cells expressing the wild-type (WT) NCX or mutants that are hypersensitive (F223E) or resistant (K229Q) to Na+-dependent inactivation. As expected, 1) Na+-dependent inactivation was promoted by high cytosolic Na+ concentration, 2) the F223E mutant was more susceptible than the WT exchanger to inactivation, whereas the K229Q mutant was resistant, and 3) inactivation was enhanced by cytosolic acidification. However, in contrast to expectations from excised patch studies, 1) the WT exchanger was resistant to Na+-dependent inactivation unless cytosolic pH was reduced, 2) reducing cellular phosphatidylinositol-4,5-bisphosphate levels did not induce Na+-dependent inactivation in the WT exchanger, 3) Na+-dependent inactivation did not increase the half-maximal cytosolic Ca2+ concentration for allosteric Ca2+ activation, 4) Na+-dependent inactivation was not reversed by high cytosolic Ca2+ concentrations, and 5) Na+-dependent inactivation was partially, but transiently, reversed by an increase in extracellular Ca2+ concentration. Thus Na+-dependent inactivation of NCX expressed in CHO cells differs in several respects from the inactivation process measured in excised patches. The refractoriness of the WT exchanger to Na+-dependent inactivation suggests that this type of inactivation is unlikely to be a strong regulator of exchange activity under physiological conditions but would probably act to inhibit NCX-mediated Ca2+ influx during ischemia. ischemia; cytosolic calcium concentration; cytosolic sodium concentration; cellular phosphatidylinositol-4,5-bisphosphate  相似文献   

9.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

10.
Agonist stimulation of human pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) with histamine showed similar spatiotemporal patterns of Ca2+ release. Both sustained elevation and oscillatory patterns of changes in cytosolic Ca2+ concentration ([Ca2+]cyt) were observed in the absence of extracellular Ca2+. Capacitative Ca2+ entry (CCE) was induced in PASMC and PAEC by passive depletion of intracellular Ca2+ stores with 10 µM cyclopiazonic acid (CPA; 15–30 min). The pyrazole derivative BTP2 inhibited CPA-activated Ca2+ influx, suggesting that depletion of CPA-sensitive internal stores is sufficient to induce CCE in both PASMC and PAEC. The recourse of histamine-mediated Ca2+ release was examined after exposure of cells to CPA, thapsigargin, caffeine, ryanodine, FCCP, or bafilomycin. In PASMC bathed in Ca2+-free solution, treatment with CPA almost abolished histamine-induced rises in [Ca2+]cyt. In PAEC bathed in Ca2+-free solution, however, treatment with CPA eliminated histamine-induced sustained and oscillatory rises in [Ca2+]cyt but did not affect initial transient increase in [Ca2+]cyt. Furthermore, treatment of PAEC with a combination of CPA (or thapsigargin) and caffeine (and ryanodine), FCCP, or bafilomycin did not abolish histamine-induced transient [Ca2+]cyt increases. These observations indicate that 1) depletion of CPA-sensitive stores is sufficient to cause CCE in both PASMC and PAEC; 2) induction of CCE in PAEC does not require depletion of all internal Ca2+ stores; 3) the histamine-releasable internal stores in PASMC are mainly CPA-sensitive stores; 4) PAEC, in addition to a CPA-sensitive functional pool, contain other stores insensitive to CPA, thapsigargin, caffeine, ryanodine, FCCP, and bafilomycin; and 5) although the CPA-insensitive stores in PAEC may not contribute to CCE, they contribute to histamine-mediated Ca2+ release. intracellular calcium stores; oscillations; pulmonary hypertension  相似文献   

11.
ATP-dependent Ca2+-uptake was investigated in sealed plasmamembrane vesicles isolated from corn roots (Zea mays L. cv.Hybrid-3352/Palma-Pioneer). In a chloride-containing medium,at high calcium concentrations, about 30% of the total Ca2+accumulation ({small tilde}4 nmol Ca2+ mg–1 protein) wasshown to be protonophore-sensitive and corresponded to the fractionof Ca2+ not accumulated in a sulphate-containing medium. Furthermore,vesicles in the presence of nitrate, which stimulates H+ transport,or vesicles preloaded with H+, take up Ca2+ more rapidly, suggestingthat, at high calcium concentrations, there is a mechanism forCa2+ transport which depends on the magnitude of the protongradient across the membrane. The fraction of Ca2+ uptake shownto be sensitive to the protonophore CCCP increased by about150–200% as the Ca2+ concentration in the medium increasedfrom 50µM to 250µM. Under the same conditions, theCCCP-insensitive fraction of Ca2+ accumulated was reduced byabout 25–30% suggesting that different Ca2+ affinitiesexist in the two Ca2+ uptake processes. Although calmodulinstimulation was not observed, the sensitivity to Ca2+ and externalpH indicates that H+ gradient-independent Ca2+ accumulationreflects activity of the Ca2+–pump. These results indicatethat the plasma membrane of corn roots contain two distinctmechanisms of Ca2+ transport: a high Ca2+ affinity, proton gradient-independentCa2+ pump and a low Ca2+ affinity, proton gradient-dependentCa2+/H+ antiport, which have greatest activity at concentrationsof Ca2+ below and above 50+M, respectively. Key words: Ca2+/H+ antiport, Ca2+ pump, plasmalemma, roots, Zea mays L.  相似文献   

12.
Antisense oligodeoxynucleotides (AS-oligos) targeted to theNa+/Ca2+exchanger (NCX) inhibit NCX-mediatedCa2+ influx in mesenteric artery(MA) myocytes [Am. J. Physiol.269 (Cell Physiol. 38):C1340-C1345, 1995]. Here, we show AS-oligo knockdown ofNCX-mediated Ca2+ efflux. Ininitial experiments, the cytosolic freeCa2+ concentration([Ca2+]cyt)was raised, and sarcoplasmic reticulum (SR)Ca2+ sequestration was blockedwith caffeine and cyclopiazonic acid; the extracellularNa+-dependent (NCX) component ofCa2+ efflux was then selectivelyinhibited in AS-oligo-treated cells but not in controls (no oligos ornonsense oligos). In contrast, theLa3+-sensitive (plasmalemmaCa2+ pump) component ofCa2+ efflux was unaffected inAS-oligo-treated cells. Knockdown of NCX activity was reversed byincubating AS-oligo-treated cells in normal media for 5 days. Transient[Ca2+]cytelevations evoked by serotonin (5-HT) at 15-min intervals inAS-oligo-treated cells were indistinguishable from those in controls.When cells were stimulated every 3 min, however, the peak amplitudes ofthe second and third responses were larger, and[Ca2+]cytreturned to baseline more slowly, in AS-oligo-treated cells than incontrols. Peak 5-HT-evoked responses in the controls, but notAS-oligo-treated cells, were augmented more than twofold inNa+-free media. This implies thatNCX is involved in Na+ gradientmodulation of SR Ca2+ stores andcell responsiveness. The repetitive stimulation data suggest that theNCX may be important during tonic activation of arterial myocytes.

  相似文献   

13.
Palytoxin-induced cell death cascade in bovine aortic endothelial cells   总被引:1,自引:0,他引:1  
The plasmalemmal Na+-K+-ATPase (NKA) pump is the receptor for the potent marine toxin palytoxin (PTX). PTX binds to the NKA and converts the pump into a monovalent cation channel that exhibits a slight permeability to Ca2+. However, the ability of PTX to directly increase cytosolic free Ca2+ concentration ([Ca2+]i) via Na+ pump channels and to initiate Ca2+ overload-induced oncotic cell death has not been examined. Thus the purpose of this study was to determine the effect of PTX on [Ca2+]i and the downstream events associated with cell death in bovine aortic endothelial cells. PTX (3–100 nM) produced a graded increase in [Ca2+]i that was dependent on extracellular Ca2+. The increase in [Ca2+]i initiated by 100 nM PTX was blocked by pretreatment with ouabain with an IC50 < 1 µM. The elevation in [Ca2+]i could be reversed by addition of ouabain at various times after PTX, but this required much higher concentrations of ouabain (0.5 mM). These results suggest that the PTX-induced rise in [Ca2+]i occurs via the Na+ pump. Subsequent to the rise in [Ca2+]i, PTX also caused a concentration-dependent increase in uptake of the vital dye ethidium bromide (EB) but not YO-PRO-1. EB uptake was also blocked by ouabain added either before or after PTX. Time-lapse video microscopy showed that PTX ultimately caused cell lysis as indicated by release of transiently expressed green fluorescent protein (molecular mass 27 kDa) and rapid uptake of propidium iodide. Cell lysis was 1) greatly delayed by removing extracellular Ca2+ or by adding ouabain after PTX, 2) blocked by the cytoprotective amino acid glycine, and 3) accompanied by dramatic membrane blebbing. These results demonstrate that PTX initiates a cell death cascade characteristic of Ca2+ overload. necrosis; vital dyes; membrane blebs; time-lapse video microscopy; fura-2  相似文献   

14.
The patch-clamptechnique was used to determine the ionic conductances activated by ATPin murine colonic smooth muscle cells. Extracellular ATP, UTP, and2-methylthioadenosine 5'-triphosphate (2-MeS-ATP) increasedoutward currents in cells with amphotericin B-perforated patches. ATP(0.5-1 mM) did not affect whole cell currents of cells dialyzedwith solutions containing ethylene glycol-bis(-aminoethylether)-N,N,N',N'-tetraaceticacid. Apamin (3 × 107M) reduced the outward current activated by ATP by 32 ± 5%. Single channel recordings from cell-attached patches showed that ATP, UTP, and2-MeS-ATP increased the open probability of small-conductance, Ca2+-dependentK+ channels with a slopeconductance of 5.3 ± 0.02 pS. Caffeine (500 µM) enhanced the openprobability of the small-conductance K+ channels, and ATP had no effectafter caffeine. Pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid tetrasodium (PPADS,104 M), a nonselectiveP2 receptor antagonist, preventedthe increase in open probability caused by ATP and 2-MeS-ATP. PPADS hadno effect on the response to caffeine. ATP-induced hyperpolarization inthe murine colon may be mediated byP2y-induced release of Ca2+ from intracellular stores andactivation of the 5.3-pSCa2+-activatedK+ channels.

  相似文献   

15.
The regulation of ammonia uptake was investigated in internodalcells of the freshwater alga Chara australis. Ammonia uptakewas estimated by monitoring (i) its depletion from the bathingsolution, (ii) the uptake of radiolabelled methylamine, an analogueof ammonia, and (iii) depletion of ammonia in the unstirredlayer with the microelectrode ion-flux estimation technique(MIFE). Distribution of methylamine (14CH3NH3+) between thevacuole and cytoplasm was estimated with efflux analysis. Whencells were bathed continuously in solutions containing ammoniaor methylamine, the uptake rates of both amines decreased over12 to 48 h despite the continuing existence of a large electrochemicalgradient favouring influx of the NH+4 and CH3NH+4 cations. Treatmentwith 1.0 to 10.0 mM MSX, an inhibitor of glutamine synthetase,caused the internal ammonia concentration to rise and reducedthe subsequent uptake of ammonia and methylamine by up to 70%within 2 h. These results suggest that the permease facilitatingNH+4/CH3NH+4 influx is under feedback or kinetic regulationfrom either internal ammonia or an intermediate of nitrogenassimilation. Treatment with metabolic inhibitors (CCCP, azide and DCMU) andsome weak acids (DMO and butyric acid) for 30 to 60 min inhibitedmethylamine uptake, but the changes in the electrical potentialdifference across the plasma membrane could not account forthe magnitude of inhibition. The rate of cytopiasmic streaming,which is an indicator of the cellular ATP concentration in Chara,was inhibited by many of these treatments. However, under certainconditions of external pH and concentration, butyric acid couldreversibly inhibit ammonia and methylamine uptake without affectingcytoplasmic streaming, demonstrating that a decrease in cytoplasmicATP concentration was not responsible for the inhibition. Theeffect of butyric acid was rapid, causing a 60% inhibition ofuptake in 15 min. We conclude that weak acids can inhibit theNH+4/CH3NH+4 permease by acidifying the cytoplasm and suggestthat this may also explain the effects of the metabolic inhibitorson ammonia and methylamine uptake. Key words: Ammonia, methylamine, uptake, regulation, Chara  相似文献   

16.
Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only 60% in these cells. Cells infused with either N-methyl-D-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by 200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution. L-type calcium current; calcium-dependent inactivation; facilitation; phosphorylation; cesium  相似文献   

17.
Phototropins (phot1 and phot2) are blue light (BL) receptorsthat mediate responses including phototropism, chloroplast movementand stomatal opening, and increased cytosolic Ca2+. BL absorbedby phototropins activates plasma membrane H+-ATPase in guardcells, resulting in membrane hyperpolarization, and drives K+uptake and stomatal opening. However, it is unclear whetherthe phototropin-mediated Ca2+ increase activates the H+-ATPase.Here, we determined cytosolic Ca2+ concentrations in guard cellprotoplasts (GCPs) from Arabidopsis transformed with aequorin.Cytosolic Ca2+ increased rapidly in response to BL in GCPs fromboth the wild type and phot1 phot2 double mutants, but was mostlysuppressed by an inhibitor of photosynthetic electron flow (DCMU).With depleted external K+, we observed another slower Ca2+ increase,which was phototropin- dependent. Fusicoccin, a H+-ATPase activator,mimicked the effect of BL. The slow Ca2+ increase thus appearsto result from membrane hyperpolarization. The slow Ca2+ increasewas suppressed by external K+ and was restored by blockers ofinward-rectifying K+ channels, CsCl and tetraethylammonium,suggesting the preferential uptake of K+ over Ca2+. Such efficientK+ uptake in response to BL was not found in mesophyll cells.Both the fast and the slow Ca2+ increases were inhibited byCa2+ channel blockers (CoCl2 and LaCl3) and a chelating agent(EGTA). These results indicate that the phototropin-mediatedCa2+ increase was not observed prior to H+-ATPase activationin guard cells and that Ca2+ entered guard cells via Ca2+ channelsthrough photosynthesis and phototropin-mediated membrane hyperpolarization.  相似文献   

18.
The acrosome reaction of sperm of the sea urchin, Strongylocentrotus purpuratus, is accompanied by ion movements. When the reaction is induced by the addition of egg jelly to sperm suspended in sea water, there is an acid release and an uptake (or exchange) of calcium ions. Verapamil and D600, drugs which block Ca2+ channels, inhibit induction of the acrosome reaction, acid release, and 45Ca2+ uptake; this inhibition is reduced at higher concentrations of external Ca2+. Although acid release correlates temporally with extension of the acrosome filament, 45Ca2+ uptake continues after the acrosome reaction has been completed. Neither the acrosome reaction nor acid release is inhibited by cyanide, azide, dinitrophenol (DNP), or carbonyl cyanide m-chlorophenylhydrazone (CCCP), whereas these metabolic inhibitors partially inhibit Ca2+ uptake. Tetraethylammonium (TEA) chloride, an inhibitor of delayed axonal potassium currents, inhibits the acrosome reaction. An increase in 86Rb+ permeability accompanies the acrosome reaction, suggesting that movement of K+ is an important effector of the reaction. In support of this, the acrosome reaction may be triggered with nigericin, an ionophore that catalyzes the electrically neutral exchange of K+ and H+ across membranes. Induction of the acrosome reaction with nigericin can occur with either Na+ or K+ as the predominant external monovalent cation, while with jelly it requires external Na+. With nigericin, there is a delay in acid release, Ca2+ uptake, and filament extension, all of which follow a transient proton uptake. Taken together, these data suggest that triggering of the acrosome reaction involves linked permeability changes for monovalent and divalent ions.  相似文献   

19.
Net fluxes of H+and Ca2+were measured in the mesophyll tissueof broad bean (Vicia faba L.) leaves and in protoplasts derivedfrom these cells. NaCl at 90 m M enhanced H+extrusion in bothprotoplasts and tissue, but in different ways. Proton extrusionwas inhibited by vanadate, suggesting the involvement of theplasma membrane H+-ATPase in cell responses to salinity. Therewas virtually no effect of NaCl on the net Ca2+flux in protoplasts,while in the tissue a large transient Ca2+efflux followed thesalt treatment. Salt-induced Ca2+efflux was essentially independentof external Ca2+concentrations in the range 0.1 to 10 m M. Also,Ca2+flux responses were ‘saturated’ above 50 m MNaCl. It is suggested that almost all the measured Ca2+fluxoriginates from Na+/Ca2+and H+/Ca2+ion exchange in the cellwall. This conclusion was supported by the results of modellingcation exchange in the cell wall. Copyright 2000 Annals of BotanyCompany Salinity, membrane transporters, wall ion exchange, proton, calcium, Vicia faba  相似文献   

20.
"Spontaneous" Ca2+ sparks and ryanodine receptor type 3 (RyR3) expression are readily detected in embryonic mammalian skeletal muscle but not in adult mammalian muscle, which rarely exhibits Ca2+ sparks and expresses predominantly RyR1. We have used confocal fluorescence imaging and systematic sampling of enzymatically dissociated single striated muscle fibers containing the Ca2+ indicator dye fluo 4 to show that the frequency of spontaneous Ca2+ sparks decreases dramatically from embryonic day 18 (E18) to postnatal day 14 (P14) in mouse diaphragm and from P1 to P14 in mouse extensor digitorum longus fibers. In contrast, the relative levels of RyR3 to RyR1 protein remained constant in diaphragm muscles from E18 to P14, indicating that changes in relative levels of RyR isoform expression did not cause the decline in Ca2+ spark frequency. E18 diaphragm fibers were used to investigate possible mechanisms underlying spark initiation in embryonic fibers. Spark frequency increased or decreased, respectively, when E18 diaphragm fibers were exposed to 8 or 0 mM Ca2+ in the extracellular Ringer solution, with no change in either the average resting fiber fluo 4 fluorescence or the average properties of the sparks. Either CoCl2 (5 mM) or nifedipine (30 µM) markedly decreased spark frequency in E18 diaphragm fibers. These results indicate that Ca2+ sparks may be triggered by locally elevated [Ca2+] due to Ca2+ influx via dihydropyridine receptor L-type Ca2+ channels in embryonic mammalian skeletal muscle. calcium; ryanodine receptor; dihydropyridine receptor; muscle development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号